• Hadoop2.6.2的Eclipse插件的使用


    欢迎转载,且请注明出处,在文章页面明显位置给出原文连接。

    本文链接:http://www.cnblogs.com/zdfjf/p/5178197.html

    首先给出eclipse插件的下载地址:http://download.csdn.net/download/zdfjf/9421244

    • 1.插件的安装

    插件下载后,放在eclipse安装目录下的plugins文件夹下,然后重启eclipse,就会发现Project Explorer窗口里多出DFS Locations这一项,对应的是HDFS里存放的文件,现在里边还没有显示目录结构,不用着急,第二步配置之后,目录结构就会出现了。

    我突然想起来博客园上有一篇文章对这部分介绍的很好,而且我感觉对这一部分,我不会写的比他好。所以我就不浪费时间了,直接参考虾皮工作室的,原文链接http://www.cnblogs.com/xia520pi/archive/2012/05/20/2510723.html,可以对这一部分配置完成,下面我们要说的是配置完成后,有一些问题导致运行程序不能成功。通过不断调试,我把我运行成功的代码和相应的配置贴出来。

    • 2.代码
     1 /**
     2  * Licensed to the Apache Software Foundation (ASF) under one
     3  * or more contributor license agreements.  See the NOTICE file
     4  * distributed with this work for additional information
     5  * regarding copyright ownership.  The ASF licenses this file
     6  * to you under the Apache License, Version 2.0 (the
     7  * "License"); you may not use this file except in compliance
     8  * with the License.  You may obtain a copy of the License at
     9  *
    10  *     http://www.apache.org/licenses/LICENSE-2.0
    11  *
    12  * Unless required by applicable law or agreed to in writing, software
    13  * distributed under the License is distributed on an "AS IS" BASIS,
    14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    15  * See the License for the specific language governing permissions and
    16  * limitations under the License.
    17  */
    18 package org.apache.hadoop.examples;
    19 
    20 import java.io.IOException;
    21 import java.util.StringTokenizer;
    22 
    23 import org.apache.hadoop.conf.Configuration;
    24 import org.apache.hadoop.fs.Path;
    25 import org.apache.hadoop.io.IntWritable;
    26 import org.apache.hadoop.io.Text;
    27 import org.apache.hadoop.mapreduce.Job;
    28 import org.apache.hadoop.mapreduce.Mapper;
    29 import org.apache.hadoop.mapreduce.Reducer;
    30 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    31 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    32 import org.apache.hadoop.util.GenericOptionsParser;
    33 
    34 public class WordCount {
    35 
    36   public static class TokenizerMapper 
    37        extends Mapper<Object, Text, Text, IntWritable>{
    38     
    39     private final static IntWritable one = new IntWritable(1);
    40     private Text word = new Text();
    41       
    42     public void map(Object key, Text value, Context context
    43                     ) throws IOException, InterruptedException {
    44       StringTokenizer itr = new StringTokenizer(value.toString());
    45       while (itr.hasMoreTokens()) {
    46         word.set(itr.nextToken());
    47         context.write(word, one);
    48       }
    49     }
    50   }
    51   
    52   public static class IntSumReducer 
    53        extends Reducer<Text,IntWritable,Text,IntWritable> {
    54     private IntWritable result = new IntWritable();
    55 
    56     public void reduce(Text key, Iterable<IntWritable> values, 
    57                        Context context
    58                        ) throws IOException, InterruptedException {
    59       int sum = 0;
    60       for (IntWritable val : values) {
    61         sum += val.get();
    62       }
    63       result.set(sum);
    64       context.write(key, result);
    65     }
    66   }
    67 
    68   public static void main(String[] args) throws Exception {
    69       System.setProperty("HADOOP_USER_NAME", "hadoop");
    70     Configuration conf = new Configuration();
    71     conf.set("mapreduce.framework.name", "yarn");
    72     conf.set("yarn.resourcemanager.address", "192.168.0.1:8032");
    73     conf.set("mapreduce.app-submission.cross-platform", "true");
    74     String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    75     if (otherArgs.length < 2) {
    76       System.err.println("Usage: wordcount <in> [<in>...] <out>");
    77       System.exit(2);
    78     }
    79     Job job = new Job(conf, "word count1");
    80     job.setJarByClass(WordCount.class);
    81     job.setMapperClass(TokenizerMapper.class);
    82     job.setCombinerClass(IntSumReducer.class);
    83     job.setReducerClass(IntSumReducer.class);
    84     job.setOutputKeyClass(Text.class);
    85     job.setOutputValueClass(IntWritable.class);
    86     for (int i = 0; i < otherArgs.length - 1; ++i) {
    87       FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
    88     }
    89     FileOutputFormat.setOutputPath(job,
    90       new Path(otherArgs[otherArgs.length - 1]));
    91     System.exit(job.waitForCompletion(true) ? 0 : 1);
    92   }
    93 }

     这里第69行,因为我windows上用户名为frank,集群上用户名是hadoop ,所以这里增加配置文件,把HADOOP_USER_NAME设置为hadoop。第71和72行是因为配置文件没有起作用,如果不加这两行,会以本地方式运行,没有提交到集群上运行。第73行因为是跨平台的,windows->linux,所以加上这一句。

    然后,最重要的一步来了,注意,注意,注意,重要的事说3遍。

    插件本来会自动把项目打成jar包,上传运行。但是有问题,现在不会自动打包。所以,我们要把project打成jar包,然后build path ,配置为项目的外部依赖包,然后右键run as -> run on hadoop.就能运行成功了。

    ps:这是我的一种方法,在配置的过程中,遇到的问题多种多样,造成问题的原因也不尽相同。So,多搜索,多思考,解决问题。

  • 相关阅读:
    Python基础实例001:数字组合问题
    Python集合
    标量、向量、矩阵、张量
    re模块函数之search
    Python常用字符串操作
    Python基础之元组
    Bai, IEEE 2019
    词嵌入
    RNN 训练时梯度爆炸和梯度消失的理解
    OCR 综述
  • 原文地址:https://www.cnblogs.com/zdfjf/p/5178197.html
Copyright © 2020-2023  润新知