• bzoj1500 [NOI2005]维修数列


    1500: [NOI2005]维修数列

    Time Limit: 10 Sec  Memory Limit: 64 MB
    Submit: 15834  Solved: 5252
    [Submit][Status][Discuss]

    Description

    Input

    输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目。
    第2行包含N个数字,描述初始时的数列。
    以下M行,每行一条命令,格式参见问题描述中的表格。
    任何时刻数列中最多含有500 000个数,数列中任何一个数字均在[-1 000, 1 000]内。
    插入的数字总数不超过4 000 000个,输入文件大小不超过20MBytes。

    Output

    对于输入数据中的GET-SUM和MAX-SUM操作,向输出文件依次打印结果,每个答案(数字)占一行。

    Sample Input

    9 8
    2 -6 3 5 1 -5 -3 6 3
    GET-SUM 5 4
    MAX-SUM
    INSERT 8 3 -5 7 2
    DELETE 12 1
    MAKE-SAME 3 3 2
    REVERSE 3 6
    GET-SUM 5 4
    MAX-SUM

    Sample Output

    -1
    10
    1
    10

    HINT

    分析:比较烦人的一道题.有两点需要特别注意:1.每次del的点要放到栈里面,不能无限加点,这样会MLE. 2.最后max-sum操作所求的序列至少要有1个元素,也就是说一个全是负数的序列的答案不是0!

              如何解决这两个问题?对于第一个问题,在建树的时候如果栈里还有多余的点,取出来就好了. 对于第二个问题,在开始将所有的lmax,rmax,ans初始化为-inf.每次pushup要么只求一个子树的答案,要么求跨过当前根的两个子树的答案.并且覆盖操作要特判覆盖的数是不是负数,如果是则必须选其中一个数作为lmax,rmax,ans.

              剩下的都是模板问题了,和线段树非常像.

    #include <stack>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 500010,inf = 707406378;
    stack <int> s;
    int n,m,a[maxn],root,tot,sizee[maxn];
    
    struct node
    {
        int fa,left,right,v,sum,ans,lmax,rmax,tag,cnt;
    }e[maxn];
    
    void pushup(int x)
    {
        sizee[x] = 1 + sizee[e[x].left] + sizee[e[x].right];
        e[x].sum = e[e[x].left].sum + e[e[x].right].sum + e[x].v;
        e[x].lmax = max(e[e[x].left].lmax,e[e[x].left].sum + e[x].v + max(0,e[e[x].right].lmax));
        e[x].rmax = max(e[e[x].right].rmax,e[e[x].right].sum + e[x].v + max(0,e[e[x].left].rmax));
        e[x].ans = max(e[e[x].left].ans,e[e[x].right].ans);
        e[x].ans = max(e[x].ans,max(e[e[x].left].rmax,0) + e[x].v + max(0,e[e[x].right].lmax));
    }
    
    void fan(int x)
    {
        int t = e[x].lmax;
        e[x].lmax = e[x].rmax;
        e[x].rmax = t;
        t = e[x].left;
        e[x].left = e[x].right;
        e[x].right = t;
        e[x].tag ^= 1;
    }
    
    void cover(int x,int y)
    {
        e[x].sum = sizee[x] * y;
        e[x].v = y;
        e[x].maxx = y;
        if (y <= 0)
            e[x].lmax = e[x].rmax = e[x].ans = y;
        else
            e[x].lmax = e[x].rmax = e[x].ans = y * sizee[x];
        e[x].cnt = 1;
    }
    
    void pushdown(int x)
    {
        if (e[x].tag)
        {
            if (e[x].left)
                fan(e[x].left);
            if (e[x].right)
                fan(e[x].right);
            e[x].tag = 0;
        }
        if (e[x].cnt)
        {
            if (e[x].left)
                cover(e[x].left,e[x].v);
            if (e[x].right)
                cover(e[x].right,e[x].v);
            e[x].cnt = 0;
        }
    }
    
    void build(int l,int r,int &x,int y)
    {
        if (l > r)
            return;
        if (!x)
        {
            if (!s.empty())
            {
                x = s.top();
                s.pop();
            }
            else
                x = ++tot;
        }
        int mid = (l + r) >> 1;
        e[x].v = a[mid];
        e[x].fa = y;
        build(l,mid - 1,e[x].left,x);
        build(mid + 1,r,e[x].right,x);
        pushup(x);
    }
    
    void turnr(int x)
    {
        pushdown(x);
        int y = e[x].fa;
        int z = e[y].fa;
        e[y].left = e[x].right;
        if (e[x].right != 0)
            e[e[x].right].fa = y;
        e[x].fa = z;
        if (z != 0)
        {
            if (e[z].left == y)
                e[z].left = x;
            else
                e[z].right = x;
        }
        e[x].right = y;
        e[y].fa = x;
        pushup(x);
        pushup(y);
    }
    
    void turnl(int x)
    {
        pushdown(x);
        int y = e[x].fa;
        int z = e[y].fa;
        e[y].right = e[x].left;
        if (e[x].left != 0)
            e[e[x].left].fa = y;
        e[x].fa = z;
        if (z != 0)
        {
            if (e[z].left == y)
                e[z].left = x;
            else
                e[z].right = x;
        }
        e[x].left = y;
        e[y].fa = x;
        pushup(x);
        pushup(y);
    }
    
    void splay(int x,int yy)
    {
        while (e[x].fa != yy)
        {
            pushdown(x);
            int y = e[x].fa;
            int z = e[y].fa;
            if (z == 0 || z == yy)
            {
                if (e[y].left == x)
                    turnr(x);
                else
                    turnl(x);
            }
            else
            {
                if (e[z].left == y && e[y].left == x)
                {
                    turnr(y);
                    turnr(x);
                }
                else
                {
                    if (e[z].right == y && e[y].right == x)
                    {
                        turnl(y);
                        turnl(x);
                    }
                    else
                    {
                        if (e[z].left == y && e[y].right == x)
                        {
                            turnl(x);
                            turnr(x);
                        }
                        else
                        {
                            turnr(x);
                            turnl(x);
                        }
                    }
                }
            }
        }
        if (yy == 0)
            root = x;
        pushup(x);
    }
    
    int find(int x,int k)
    {
        pushdown(x);
        if (k > sizee[e[x].left] + 1)
            return find(e[x].right,k - 1 - sizee[e[x].left]);
        if (k == sizee[e[x].left] + 1)
            return x;
        return find(e[x].left,k);
    }
    
    void del(int x)
    {
        if (!x)
            return;
        s.push(x);
        del(e[x].left);
        del(e[x].right);
        sizee[x] = e[x].left = e[x].right = e[x].cnt = e[x].tag = e[x].fa = e[x].sum = e[x].v = 0;
        e[x].maxx = e[x].lmax = e[x].rmax = e[x].ans = -inf;
    }
    
    int main()
    {
        for (int i = 0; i < maxn; i++)
            e[i].lmax = e[i].rmax = e[i].ans = -inf;
        scanf("%d%d",&n,&m);
        for (int i = 1; i <= n; i++)
            scanf("%d",&a[i]);
        build(0,n + 1,root,0);
        root = 1;
        for (int i = 1; i <= m; i++)
        {
            char s[15];
            scanf("%s",s);
            if (s[0] == 'I')
            {
                int x,y;
                scanf("%d%d",&x,&y);
                for (int j = 1; j <= y; j++)
                    scanf("%d",&a[j]);
                int p = find(root,x + 1),q = find(root,x + 2);
                splay(p,0);
                splay(q,p);
                build(1,y,e[q].left,q);
                pushup(q);
                pushup(p);
            }
            if (s[0] == 'D')
            {
                int x,y;
                scanf("%d%d",&x,&y);
                int p = find(root,x),q = find(root,x + y + 1);
                splay(p,0);
                splay(q,p);
                del(e[q].left);
                e[q].left = 0;
                pushup(q);
                pushup(p);
            }
            if (s[0] == 'M' && s[2] == 'K')
            {
                int x,y,z;
                scanf("%d%d%d",&x,&y,&z);
                int p = find(root,x),q = find(root,x + y + 1);
                splay(p,0);
                splay(q,p);
                cover(e[q].left,z);
                pushup(q);
                pushup(p);
            }
            if (s[0] == 'R')
            {
                int x,y;
                scanf("%d%d",&x,&y);
                int p = find(root,x),q = find(root,x + y + 1);
                splay(p,0);
                splay(q,p);
                if (e[q].left && !e[e[q].left].tag)
                fan(e[q].left);
                pushup(q);
                pushup(p);
            }
            if (s[0] == 'G')
            {
                int x,y;
                scanf("%d%d",&x,&y);
                int p = find(root,x),q = find(root,x + y + 1);
                splay(p,0);
                splay(q,p);
                printf("%d
    ",e[e[q].left].sum);
            }
            if (s[0] == 'M' && s[2] == 'X')
            {
                int p = find(root,1),q = find(root,sizee[root]);
                splay(p,0);
                splay(q,p);
                printf("%d
    ",e[e[q].left].ans);
            }
        }
    
        return 0;
    }
  • 相关阅读:
    96. Unique Binary Search Trees1和2
    576. Out of Boundary Paths
    686. Repeated String Match判断字符串重复几次可以包含另外一个
    650. 2 Keys Keyboard
    Penetration Test
    Penetration Test
    Penetration Test
    Penetration Test
    CISSP 考试经验分享
    2019-2020 ICPC Asia Hong Kong Regional Contest J—Junior Mathematician 数位dp
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8276101.html
Copyright © 2020-2023  润新知