A set of points on a plane is called good, if for any two points at least one of the three conditions is true:
- those two points lie on same horizontal line;
- those two points lie on same vertical line;
- the rectangle, with corners in these two points, contains inside or on its borders at least one point of the set, other than these two. We mean here a rectangle with sides parallel to coordinates' axes, the so-called bounding box of the two points.
You are given a set consisting of n points on a plane. Find any good superset of the given set whose size would not exceed 2·105 points.
Input
The first line contains an integer n (1 ≤ n ≤ 104) — the number of points in the initial set. Next n lines describe the set's points. Each line contains two integers xi and yi ( - 109 ≤ xi, yi ≤ 109) — a corresponding point's coordinates. It is guaranteed that all the points are different.
Output
Print on the first line the number of points m (n ≤ m ≤ 2·105) in a good superset, print on next m lines the points. The absolute value of the points' coordinates should not exceed 109. Note that you should not minimize m, it is enough to find any good superset of the given set, whose size does not exceed 2·105.
All points in the superset should have integer coordinates.
Example
2
1 1
2 2
3
1 1
2 2
1 2
大致题意:给定一些点,要求添加一些点,使得任意一对点满足三个条件之一即可:1.横坐标相同.2.纵坐标相同.3.两个点围成的矩形内部或边上有其他的点.
分析:构造题,看到平面上分布着一些点,想到了平面上的分治.常见的方法是取中间点为中轴,左右两边分治.关键是两边的答案不好合并.
一开始的想法是枚举位于左边的点再枚举位于右边的点,如果两个点之间没有其它点,就必须在另外两个拐角之一放一个点,这样还要分类讨论,而且枚举的复杂度高,不是很好.在网上看到了其他人的构造方法,非常巧妙:以中间的点的所在的竖线为中轴,其他所有点向中轴投影,投影的点即为要添加的点.这样既满足了矩形内部有点的性质,又使得新添加的点全部在一条直线上,不用再对新添加的点来继续讨论.感觉平面上的分治都和中轴有关,以后这类问题要多往这个方向上想.
最后要去重,点数可能比10w要多,数组要开大一点.
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; struct node { int x,y; }e[100010],ans[1000010],print[1000010]; int n,cnt,tot; bool cmp(node a,node b) { if (a.x == b.x) return a.y < b.y; return a.x < b.x; } void solve(int l,int r) { if (l == r) ans[++cnt] = e[l]; if (l >= r) return; int mid = (l + r) >> 1; solve(l,mid - 1); solve(mid + 1,r); for (int i = l; i <= r; i++) { node temp; temp.x = e[mid].x; temp.y = e[i].y; ans[++cnt] = temp; } } int main() { scanf("%d",&n); for (int i = 1; i <= n; i++) scanf("%d%d",&e[i].x,&e[i].y); sort(e + 1,e + 1 + n,cmp); solve(1,n); sort(ans + 1,ans + 1 + cnt,cmp); print[++tot] = ans[1]; for (int i = 2; i <= cnt; i++) if (ans[i].x != ans[i - 1].x || ans[i].y != ans[i - 1].y) print[++tot] = ans[i]; printf("%d ",tot); for (int i = 1; i <= tot; i++) printf("%d %d ",print[i].x,print[i].y); return 0; }