Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4775 | Accepted: 2827 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
Source
题目大意:求n的原根个数.
分析:结论题,n的原根个数=φ(φ(n)).
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int n,phi[70000],prime[70000],tot,vis[70000]; void init() { phi[1] = 1; for (int i = 2; i <= 70000; i++) { if (!vis[i]) { prime[++tot] = i; phi[i] = i - 1; } for (int j = 1; j <= tot; j++) { int t = prime[j] * i; if (t > 70000) break; vis[t] = 1; if (i % prime[j] == 0) { phi[t] = phi[i] * prime[j]; break; } phi[t] = phi[i] * (prime[j] - 1); } } } int main() { init(); while (scanf("%d",&n) != EOF) printf("%d ",phi[n - 1]); }