• poj2689 Prime Distance


    Prime Distance
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 19952   Accepted: 5357

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.
    

    Source

    大致题意:每次给一个区间,要求给出这个区间相邻的差最小和最大的素数对.
    分析:一开始还以为l,u不超过1000000,这样的话直接筛就好了,没想到是不超过2,147,483,647,这样的话素数筛就筛不到这个范围了.但是每个区间都很小,需要把区间中的每个素数都给求出来才能继续做下去.那么利用筛法的原理,先筛出一小部分素数,然后将它在区间中的倍数给去掉.这里只需要筛出根号以内的素数就可以了.不过筛的话这个区间的数还是存不下,那么就要将整个区间偏移l,在小区间里求出来答案以后再往回偏移l,就能够得到答案了.
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 100000;
    
    int l,r,prime[1000100],tot,vis[1000010],cur,cur2,p1,p2,ans1,ans2,x3,y3,x4,y4;
    bool flag[1000010];
    
    void init()
    {
        for (int i = 2; i <= maxn; i++)
        {
            if (!vis[i])
            prime[++tot] = i;
            for (int j = 1; j <= tot; j++)
            {
                int t = prime[j] * i;
                if (t > maxn)
                break;
                vis[t] = 1;
                if (i % prime[j] == 0)
                break;
            }
        }
    }
    
    int main()
    {
        init();
        while (scanf("%d%d",&l,&r) == 2 && (l || r))
        {
            memset(flag,false,sizeof(flag));
            ans1 = 100000000,ans2 = 0;
            for (int i = 1; i <= tot; i++)
            {
                int tl = (l - 1) / prime[i],tr = r / prime[i];
                for (int j = max(2,tl); j <= tr; j++)
                flag[prime[i] * j - l] = 1;
            }
            int cur = -1;
            if (l == 1)
            flag[0] = 1;
            for (int i = 0; i <= r - l; i++)
            {
                if (!flag[i])
                {
                    if (cur != -1)
                    {
                        if (i - cur < ans1)
                        {
                            ans1 = i - cur;
                            x3 = cur;
                            y3 = i;
                        }
                        if (i - cur > ans2)
                        {
                            ans2 = i - cur;
                            x4 = cur;
                            y4 = i;
                        }
                    }
                    cur = i;
                }
            }
            if (!ans2)
           cout<<"There are no adjacent primes."<<endl; 
            else
            cout<<x3 + l<<","<<y3 + l<<" are closest, "<<x4 + l<<","<<y4 + l<<" are most distant."<<endl;
        }
    
        return 0;
    }
  • 相关阅读:
    Asp.Net Web API 2第一课——入门
    Servlet之ServletContext获取web上下文路径、全局参数、和Attribute(域)
    jsp 获取服务器ip 以及端口号
    对String值不可变的理解以及String类型的引用传递问题
    关于 SAXParseException Content is not allowed in Prolog (前言中不允许有内容)
    用tomcat插件 在Eclipse 中配置Tomcat项目
    docker保存日志文件到本地
    java split函数结尾空字符串被丢弃的问题
    byte类型的127+1=-128?
    java 中 Integer 传参方式的问题
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8068431.html
Copyright © 2020-2023  润新知