题目描述
欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:
Start:25 7
Stan:11 7
Ollie:4 7
Stan:4 3
Ollie:1 3
Stan:1 0
Stan赢得了游戏的胜利。
现在,假设他们完美地操作,谁会取得胜利呢?
输入输出格式
输入格式:
第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)
输出格式:
对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”
输入输出样例
输出样例#1:
Stan wins Ollie wins
分析:可以用sg函数给秒掉,不过分析一下还是能发现规律的.设当前较大的数为m,较小的数为n,如果m/n==1,那么只能进行一种操作,如果m/n>1,那么我可以拿(m/n - 1) * n个,下一次对手就只能拿n个,进入到下一状态,我也可以全部拿完,让对手进入下一状态,也就是说如果我先到m/n>1的状态,那么我就掌控的局势,那么不断地辗转相除,更新答案即可.
#include <cstdio> #include <cmath> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int c,f = 1; long long a,b; int main() { scanf("%d",&c); while (c--) { f = 1; scanf("%lld%lld",&a,&b); if (a < b) swap(a,b); while(b && a / b == 1 && a % b) { f = -f; long long t = a % b; a = b; b = t; } if (f == 1) puts("Stan wins"); else puts("Ollie wins"); } return 0; }