• P2495 [SDOI2011]消耗战 [树形dp, 虚树]


    [SDOI2011][SDOI2011]消耗战

    题目描述见链接 .


    color{red}{正解部分}

    考虑单个询问如何处理, 有个很显然的 树形dpdp,
    Min_p[k]Min\_p[k] 表示 kk 上方 最小的边, F[k]F[k] 表示阻断 kk 以下所有 “含丰富能源” 的点 所需要的最小花费, 则

    F[k]={min(wkto,F[to])                                  k==1min(Min_p[k],min(wkto,F[to]))    elseF[k] = egin{cases} sum min(w_{k ightarrow to}, F[to]) k == 1\ min left( Min\_p[k],sum min(w_{k ightarrow to}, F[to]) ight) elseend{cases}

    单次询问复杂度是 O(N)O(N) 的 .

    注意到该题虽然有很多询问, 但是每次询问涉及的点数 K500000sum K le 500000, 且上方 dpdp 方程只与关键点有关 .
    于是考虑将关于每次询问的 虚树 建立起来, 在 虚树 上进行 树形dp, 时间复杂度 O(N+K)O(N+sum K) .


    color{red}{实现部分}

    注意到在建立 虚树 时, 点与点之间并不一定是直接相连的, 所以上方 dpdp 方程中的 wktow_{k ightarrow to} 无法方便地得知,

    但是经过思考可以发现若使用 Min_p[to]Min\_p[to] 代替 wktow_{k ightarrow to}, 不会对答案造成影响 .

    #include<bits/stdc++.h>
    
    typedef long long ll;
    const int maxn = 550005;
    int N, M, K, Ans;
    int num, dfnum, num1, cnt;
    int head[maxn], Fa[maxn][21], stk[maxn], mark[maxn];
    int A[maxn], dfn[maxn], dep[maxn], head1[maxn]; 
    bool Bok[maxn], Used[maxn];
    ll dp[maxn], Min_p[maxn];
    
    struct Edge{ int nxt, to, dis; } edge[maxn<<1], ed[maxn<<1];
    
    void Add(int from, int to, int dis){
            edge[num] = (Edge){ head[from], to, dis };
            head[from] = num ++;
    }
    void DFS_1(int k, int fa){
            dep[k] = dep[fa] + 1;
            dfn[k] = ++ dfnum;
            for(int i = 1; i <= 20; i ++) Fa[k][i] = Fa[Fa[k][i-1]][i-1];
            for(int i = head[k]; ~i; i = edge[i].nxt){
                    int to = edge[i].to;
                    if(dep[to]) continue ;
                    Fa[to][0] = k;
                    if(k != 1) Min_p[to] = std::min(Min_p[k], 1ll*edge[i].dis);
                    else Min_p[to] = edge[i].dis;
                    DFS_1(to, k);
            }
    }
    int LCA(int x, int y){
            if(dep[x] < dep[y]) std::swap(x, y);
            for(int i = 20; i >= 0; i --)
                    if(dep[Fa[x][i]] >= dep[y]) x = Fa[x][i];
            if(x == y) return x; 
            for(int i = 20; i >= 0; i --) 
                    if(Fa[x][i] != Fa[y][i]) x = Fa[x][i], y = Fa[y][i];
            return Fa[x][0];
    }
    bool cmp_1(int a, int b){ return dfn[a] < dfn[b]; }
    
    void Add_2(int from, int to){
            ed[num1] = (Edge){ head1[from], to, 0 };
            head1[from] = num1 ++;
    }
    void Build(){
            num1 = 0; std::sort(A+1, A+K+1, cmp_1);
            int top = 0; stk[++ top] = 1;
            for(int i = 1; i <= K; i ++){
                    int u = stk[top], v = A[i];
                    int p = LCA(u, v);
                    if(!Used[p]) Used[p] = 1, mark[++ cnt] = p;
                    if(p == u) stk[++ top] = v;
                    else{
                            while(dep[stk[top-1]] >= dep[p] && top >= 2)
                                    Add_2(stk[top-1], stk[top]), Add_2(stk[top], stk[top-1]), top --;
                            if(stk[top] != p) Add_2(p, stk[top]), Add_2(stk[top], p), stk[top] = p; 
                            stk[++ top] = v;
                    }
            }
            for(int i = 1; i <= top; i ++) 
                    if(i != top) Add_2(stk[i], stk[i+1]), Add_2(stk[i+1], stk[i]);
    }
    void Dp(int k, int la){
            dp[k] = Min_p[k]; ll tmp = 0;
            for(int i = head1[k]; ~i; i = ed[i].nxt){
                    int to = ed[i].to;
                    if(to == la) continue ;
                    Dp(to, k);
                    tmp += std::min(dp[to], 1LL*Min_p[to]);
            }
            if(!Bok[k]) dp[k] = std::min(dp[k], tmp);
    }
    
    void Solve(){
            DFS_1(1, 0);
            scanf("%d", &M);
            while(M --){
                    scanf("%d", &K);
                    for(int i = 1; i <= K; i ++) scanf("%d", &A[i]), Bok[A[i]] = Used[A[i]] = 1, mark[++ cnt] = A[i];
                    Build(); Min_p[1] = 0x3f3f3f3f3f3f3f3f; Dp(1, 0);
                    printf("%lld
    ", dp[1]);
                    for(int i = 1; i <= cnt; i ++) head1[mark[i]] = -1, Used[mark[i]] = Bok[mark[i]] = 0;
                    cnt = 0;
            }
    }
    
    void Input_1(){
            memset(head, -1, sizeof head); memset(head1, -1, sizeof head1);
            scanf("%d", &N);
            int u, v, w;
            for(int i = 1; i < N; i ++) scanf("%d%d%d", &u, &v, &w), Add(u, v, w), Add(v, u, w);
    }
    
    int main(){
            Input_1(); Solve();
            return 0;
    }
    
  • 相关阅读:
    BootStrap 智能表单系列 五 表单依赖插件处理
    BootStrap 智能表单系列 四 表单布局介绍
    BootStrap 智能表单系列 三 分块表单配置的介绍
    LinQ.OrderBy 多个字段排序
    ABP.NET CORE 遇到的小问题
    vs2017断点无效 当前不会命中断点 已设置断点单还未绑定
    DateTime 取年月日;字符串截取
    C# DateTime 多个时间段循环相加;两个时间段求差值
    ABP.Net Core 小白使用教程 附件:ABP.NET中文文档
    ASP.NET MVC+Easyui 后台管理系统的图片上传
  • 原文地址:https://www.cnblogs.com/zbr162/p/11822460.html
Copyright © 2020-2023  润新知