• KMP的一些好题


    KMP 练习题

    在竞赛中 KMP 已经考的比较少了,然而习题还是要做的。

    KMP 的练习题目一般是围绕着 (next) 数组和 (f) 数组的不同理解出发的,具体请看例题。

    T1 [BOI2009]Radio Transmission 无线传输

    题目链接:Link

    题目描述:

    给定一个字符串 (A)(A) 是由另一个字符串 (B) 不断循环拼接而成的(可能不是整数个 (B)),求 (B) 可能长度的最小值。

    Solution:

    这道题目不难,但是如果自己独立思考想出解法,可以极大提升对 KMP 算法 (next) 数组的理解。

    首先,假设这个字符串最短的长度为 (k) ,那么 (A_{k+1} ightarrow A_{k+k}) (假设 (A) 长度 (N)(N>2k))一定等于 (A_1 ightarrow A_k) 。如果对 (A) 进行自我匹配,求出 (next) 数组,则 (next_{k+1} ightarrow next_{N}) 应该成首项为 1 ,公差为 1 的等差数列,因为第一个 (B) 串一定可以和第二个、第三个、第 (n)(B) 串完全匹配,如下表:

             1 2 3 4 5 6 7 8 9...
             a a b a a a b a a...
    next     0 1 0 1 1 2 3 4 5...
    

    (next_5) 是这个等差数列的第一项,那么这个等差数列的最后一项为 (next_8=5) ,根据等差数列的公式得知项数 (n) 等于 最后一项 (next_8) 的值。又因为答案为这个等差数列第一项的前一项,所以最后答案就是 (n-next_n)

    Code:

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    
    //using namespace std;
    
    const int maxn=1000005;
    
    int n;
    char str[maxn];
    int next[maxn];
    
    void kmp(){
      next[1]=0;
      for(int i=2,j=0;i<=n;++i){
        while(j>0 && str[i]!=str[j+1]) j=next[j];
        if(str[i]==str[j+1]) j++;
        next[i]=j;
      }
      printf("%d
    ",n-next[n]);
    }
    
    signed main(){
      scanf("%d",&n);
      scanf("%s",str+1);
      kmp();
      return 0;
    }
    

    T2 UVA1328 Period

    题目链接:Link

    题目描述:

    洛谷上给出的翻译比较简略,这里重新翻译一下题面。(原版英文题面

    给定字符串长度 (N(Nleq 1e6)) ,然后给出一个长度为 (N) 的字符串 (A)

    如果对于 (A) 的前 (i) 个字符是严格循环同构的(由一个字符串 (B) 首尾相连 (n(ngeq 2)) 次构成),输出 (i,n)

    有多组数据,如果 (N=0) 表示输入结束。

    Solution:

    本题和 T1 有异曲同工之处,类似 T1 的思路,先对字符串跑 KMP 求出 (next) 数组。

    利用上面的结论,如果一个字符串从第一项开始循环同构,那么它的最小循环节为 (i-next_i)

    假设字符串 (A) 的某个前缀长度为 (i) ,已经求出它的最小循环节,则这个循环节出现的次数应该是 (frac{i}{i-next_i})

    根据题目要求,答案应该满足 (frac{i}{i-next_i}geq 2,i\%frac{i}{i-next_i}=0) ,于是扫描 (next) 数组,输出答案即可。

    Code:

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    
    //using namespace std;
    
    const int maxn=1000005;
    
    char str[maxn];
    int next[maxn];
    
    int n=1,cas;
    
    void kmp(){
      next[1]=0;
      for(int i=2,j=0;i<=n;++i){
        while(j>0 && str[i]!=str[j+1]) j=next[j];
        if(str[i]==str[j+1]) j++;
        next[i]=j;
      }
      printf("Test case #%d
    ",cas);
      for(int i=2;i<=n;++i){//扫描、判断答案是否合法
        if(next[i]*2>=i && i%(i-next[i])==0)
          printf("%d %d
    ",i,i/(i-next[i]));
      }
      puts("");
    }
    
    signed main(){
      while(n){
        scanf("%d",&n);
        if(n){
          cas++;
          scanf("%s",str+1);
          kmp();
        }
      }
      return 0;
    }
    

    T3 [USACO15FEB]Censoring S

    题目链接:Link

    题目描述:

    给定两个字符串 (A)(B) 要求从 (A) 中不断删除找到的第一个 (B) ,然后拼接剩下的串,输出删除后的串。

    注意:删除之后,两端的 (A) 串剩余部分可能会再拼成一个 (B)

    Solution:

    (A) 长度为 (n)(B) 的长度为 (m)

    显然这题是字符串匹配题,要从 (A) 中匹配 (B) ,可以使用 KMP 查找 (B) 的位置。

    这里删除操作不影响 (B),所以先跑 KMP 的第一阶段,求出 (B)(next) 数组。

    然后,还是一位一位地求解 (f) 数组,如果还没和 (B) 串匹配上,就把这一位的 (A) 加入答案串,答案串长度++。

    如果匹配上了,把答案串删掉 (m) 位,然后从 (m) 位之前重新开始匹配。

    注意这个操作需要更新 (j) 的值为上一个答案的 (f) 值,这样相当于忽略了中间的 (m) 个字符继续进行匹配操作。

    由于数组不太好操作,这里我使用了 STL stack 来实现记录答案和更新 (j) 的操作。

    Code:

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<stack>
    
    //using namespace std;
    
    const int maxn=1000005;
    
    char A[maxn],B[maxn];//A原串,B模式串
    int lena,lenb;
    
    int next[maxn],f[maxn];
    std::stack<char>stk;
    std::stack<int>s;
    
    char ans[maxn];
    
    void kmp(){
      next[1]=0;
      for(int i=2,j=0;i<=lenb;++i){
        while(j>0 && B[i]!=B[j+1]) j=next[j];
        if(B[i]==B[j+1]) j++;
        next[i]=j;
      }
      s.push(0);//这是为了防止把元素全弹出去后 j=s.top() 操作导致 RE
      for(int i=1,j=0;i<=lena;++i){
        while(j>0 && A[i]!=B[j+1]) j=next[j];
        if(A[i]==B[j+1]) j++;
        f[i]=j;
        stk.push(A[i]);
        s.push(f[i]);//表示这一位答案的 f 值
        //其实为了减小常数应该开结构体存,但是因为懒就用两个同步栈代替了
        if(f[i]==lenb){
          for(int k=1;k<=lenb;++k)
            stk.pop(),s.pop();
          j=s.top();//弹完后 j 更新为栈顶元素的 f ,也就是 m 个元素之前的那个 f 值
        }
      }
      int num=stk.size();
      for(int i=1;i<=num;i++){
        ans[i]=stk.top();
        stk.pop();
      }
      for(int i=num;i>=1;--i)
        putchar(ans[i]);
    }
    
    signed main(){
      scanf("%s%s",A+1,B+1);
      lena=std::strlen(A+1);
      lenb=std::strlen(B+1);
      kmp();
      return 0;
    }
    

    T4 [POI2006]OKR-Periods of Words

    题目链接:Link

    题目描述:

    给定一个长度为 (N) 的字符串 (A) ,若一个非 (A) 本身的串 (Q)(A) 的前缀,且 (A)(Q+Q) 的前缀,则称 (Q)(A) 的周期( (Q) 可以为空),求 (A) 的所有前缀的最大周期串长度之和。

    Solution:

    对于长度为 (i) 的串,要满足的条件 (A_1 ightarrow A_i)(Q+Q) 的前缀。想要满足这个条件,(next_i) 必须大于 0 。( (next_i) 的另一个定义是:模式串长度为 (i) 的前缀,其前缀和后缀相等的最长长度。这个性质可以简单地根据 KMP 的原理得出,这里不再赘述。)

    假设蓝色为模式串长度为 (i) 的前缀,红色为 (next_i) ,如果从前后缀第一个不相等的位置截为 (Q) (绿色),那么把 (Q') 拼在后面正好可以让红色的部分重合,而且使得 (Q) 的长度最长。

    另外还有一个条件,显然 (Q) 的长度至少为 (frac i 2)

    既然要使得 (Q) 的长度最长,那么势必要让 (next_i) (红色)部分最短。不巧的是,KMP 算法求出的是最大可能的 (next_i) 。记得求 (next) 数组时的证明吗?(next_i) 所有的可能值是 next[i],next[next[i]],next[nxet[next[i]]]... 我们可以递归访问 (next) 数组来得到它的最小值 (p),此时 (Q) 长度最长,为 (i-p)

    但是有这样一个问题,如果这个字符串全都是同一个字符(比如 'a' ),那么我们每次递归只能向前跳一个字符,这样导致每找一次长度为 (i) 的前缀的“周期”就要递归 (i-1) 次,这样总复杂度退化到 (O(n^2))

    要解决这个问题,就得防止递归次数退化。我联想到了并查集的路径压缩方法,并查集的做法是:在查询到 (x) 的父亲时顺便把 (x) 及其子树直接挂到它父亲的下面。那么我们为什么不在查询到 (next_i) 时直接把它修改为最小值呢?

    优化以后,时间复杂度 (O(n))

    Code:

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    
    //using namespace std;
    
    const int maxn=1000005;
    
    char str[maxn];
    int n;
    long long ans;//第一次交不开long long见了祖宗
    
    int next[maxn];
    
    void kmp(){
      next[1]=0;
      for(int i=2,j=0;i<=n;++i){
        while(j>0 && str[i]!=str[j+1]) j=next[j];
        if(str[i]==str[j+1]) j++;
        next[i]=j;
      }
      for(int i=2,j=2;i<=n;++i,j=i){
        while(next[j]) j=next[j];//找最小的next[i]的可能值
        if(next[i]) next[i]=j;//类似路径压缩
        ans+=i-j;//更新答案
      }
      printf("%lld
    ",ans);
    }
    
    signed main(){
      //freopen("P3435_13.in","r",stdin);
      scanf("%d",&n);
      scanf("%s",str+1);
      kmp();
      return 0;
    }
    

    T5 [NOI2014] 动物园

    这个题我想了一下午,然而并没有想出怎么优化 (O(Tn^2)) 的复杂度到 (O(Tn)) ,于是口胡了一个 (O(Tnlogn)) 的做法。

    吸氧 之后以最慢点 537ms 草过去了((nlogn) 还是快啊)。

    题目链接:Link

    题目描述:

    给定一个长度为 (N) 的字符串 (A) ,求出 (num) 数组。其中 (num_i) 表示 (A) 的长度为 (i) 的前缀 (P),满足既是 (P) 的前缀又是 (P) 的后缀,且长度 (kleq frac i 2) 的子串 (Q) 的个数。

    为了避免大量输出,只要求输出:(prodlimits_{i=1}^Nnum_i+1 mod 1e9+7) 的值。

    Solution:

    在叙述解法之前,想问读者一个问题:

    • 关于 (next) 数组的递归访问,以及前面 T4 中提到的类似并查集路径压缩优化,你有没有想到什么?

    显然,(next) 数组是一棵以 0 为根的带权树。想想吧,不管我们从哪里开始递归访问,总能访问到 (next_i=0)

    除此之外,(next) 树还有一个十分重要的性质:对于每棵非空子树,根节点权值一定小于子节点权值——这是 (next) 数组的定义导致的。根据 (next) 的定义,不难发现:(next_i<i) ,故每个节点的父节点权值一定小于子节点权值。

    回到本题,先 KMP 预处理出 (next) 数组。很显然,对于每一个 (i) ,它的 (next_i) 就表示可能的 (Q) 的长度(参考 T4 中给出的 (next) 数组的另一个定义)。我们不断的递归访问其 (next) ,如果这个 (next) 值小于 (frac i 2) ,那么说明这个 (next) 代表一个合法的 (Q) 串,不断递归操作,直到访问到 0 为止,就找出了对于 (i) 的所有的合法的 (Q) 串。

    但是,还是 T4 中的问题,这样做会被全是相同字符的数据把复杂度卡到 (O(n^2))

    考虑优化:对于每个 (i) ,其 (next) 的访问顺序都是一条权值单调递增的带权链(第 (i) 个节点的权值是 (next_i))。这样可以使用 ST 算法在 (logn) 的时间内查询权值小于 (k) 的第一个节点位置。利用这个性质可以查询权值小于 (frac i 2) 的第一个节点 (v),那么 (v) 前面的节点权值必然小于 (frac i 2) ,也就是说,(forall iin[1,v],next_i=Q) ,且这些 (Q) 都合法。要统计答案的话,再从 (v) 出发,倍增找出它前面有多少个节点,计入答案就行了。

    另外,实际操作的时候要把这 (n) 条链建成一棵树,不然开不下那么大的空间,预处理也会超时的。

    Code:

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<iostream>
    
    //using namespace std;
    
    #define ll long long
    #define mod 1000000007
    const int maxn=1000005;
    
    int N,n;
    
    char str[maxn];
    int next[maxn];
    
    int f[20][maxn];
    //f[i][j] 表示 j的2^i 祖先,量小的做第一维,空间连续性更强,会更快!
    //2^20=1.4e6 卡满常数,否则可能TLE
    
    ll sum=1;
    
    void kmp(){
      next[1]=0;
      for(int i=2,j=0;i<=n;++i){
        while(j && str[i]!=str[j+1]) j=next[j];
        if(str[i]==str[j+1]) j++;
        next[i]=j;
        f[0][i]=j;
      }
      for(int i=1;i<20;++i)
        for(int j=1;j<=n;++j)
          f[i][j]=f[i-1][f[i-1][j]];
      sum=1;
      for(int i=2;i<=n;++i){
        int p=i;
        for(int j=19;j>=0;--j)
          if(f[j][p]*2>i) //现在的 p 不合法
            p=f[j][p];//跳到 p 的 2^j 祖先 
        ll tot=0;
        for(int j=19;j>=0;--j)
          if(f[j][p])
            tot+=1<<j,p=f[j][p];//这一蹦,蹦过了 2^j 个节点,也就是有 2^j 个合法方案
        sum=sum*(tot+1)%mod;//统计答案
      }
      printf("%lld
    ",sum);
    }
    
    signed main(){
      scanf("%d",&N);
      while(N--){
        scanf("%s",str+1);
        n=std::strlen(str+1);
        kmp();
      }
      return 0;
    }
    

    写在最后

    特别鸣谢:

    李煜东在《算法竞赛进阶指南》中和 二gou子(徐队) 提供的 KMP 好题。

    繁华尽处, 寻一静谧山谷, 筑一木制小屋, 砌一青石小路, 与你晨钟暮鼓, 安之若素。
  • 相关阅读:
    Laravel 5.2 使用 JWT 完成多用户认证 | Laravel China 社区
    (上线时清缓存)laravel 5.1 的程序性能优化(配置文件)
    linux计划任务及压缩归档
    用户及用户管理
    vim编辑器
    linux进阶命令
    权限管理
    linux基础命令2
    linu基础命令1
    连接Xshell
  • 原文地址:https://www.cnblogs.com/zaza-zt/p/14964912.html
Copyright © 2020-2023  润新知