• 最大异或路径


    最大异或数对

    在《算法竞赛进阶指南》 by 李煜东一书中,我看到了这个问题,但是某洛谷 OJ 上没有此题,(书上给出原题题号 CH1602 ,我压根不知道这个是哪个 OJ ,就放弃了 AC 原题的想法,知道原题网址的朋友可以在下方评论)所以我找到了洛谷上另一个题意相似的题目代替它。

    Part 1 按位异或

    按位异或有非常多的理解方式,这也导致围绕着“异或”运算的题目层出不穷,变化多端。今天先从“最大异或数对”这一题的角度,来看看异或运算的性质。另外,在下文中,(a) 异或 (b) 记作 (aoplus b)

    对于任意一个十进制 int 类型整数,它有一个自己对应的二进制表示法。假设这个数是 (x) ,那么它的二进制表示为 ((x)_2)

    例如整数 998244353 ,它的二进制表示为 (( ext{998244353})_2=00111011100000000000000000000001) ,这里为了把它的二进制形式补全为 32 位 ( int 范围 ),在前面添加两个前导 0 。

    给定另一个整数 114514 ,它的二进制表示为 (( ext{114514})_2=00000000000000011011111101010010)

    现在,求 ( ext{998244353} oplus ext{114514})

    进行异或运算时,先把这两个数的二进制表示“对齐”。刚才我们把这两个数的位数补到 32 位就是为了方便 “对齐” 。

    对齐之后,观察对应的每一位数,若相同,则异或结果的二进制表示的这一位为 0 ,否则为 1 。

    具体看下面示例:

    998244353:00111011100000000000000000000001
       114514:00000000000000011011111101010010
       result:00111011100000011011111101010011
       result=998358867
    

    再把得到结果转换为 10 进制,得到结果:( ext{998358867})

    Part 2 最大异或数对

    给你包含 (N(Nleq 2e5)) 个 int 类型非负整数的序列 (A) ,最大化 (A_i oplus A_j)

    朴素的做法就是枚举每一个数,然后再枚举其他数与它异或,更新最大值,复杂度 (O(N^2))

    现在来介绍一种更快的做法:

    根据上面阐述的异或运算的性质,发现两个运算数二进制下更高数位上的数不同,会导致结果更大。也就是说,这两个运算数在二进制意义下,左向右第一个不同的位置出现的越早,异或结果就越大。

    更直白的,其实就是让两个数的二进制表示的公共前缀最短。处理字符串公共前缀问题,字典树 ( ext{Trie}) 当仁不让。

    先把这 (N) 个数都拆成二进制 01 字符串,并补全到 32 位,然后全部插入 ( ext{Trie}) 中。

    对于 (A_i) 对应的二进制串,在 ( ext{Trie}) 中进行一次与检索类似的操作,尽可能往与 (A_i) 当前位不同字符的方向向下访问。当然了,如果与 (A_i) 当前位不同的指针是空的,那么只好访问与它相同的指针。如果选择了与 (A_i) 当前位不同的指针,记录当前位答案为 1 ,否则记录当前位答案为 0 。

    如图,假设在一棵 ( ext{Trie}) 中,插入了 2(010) , 5(101) , 7(111) 三个数,查询与 6(110) , 3(011) 异或运算结果最大的数。(为了方便画图,我们暂时使用 3 位二进制位代替 32 位二进制位)

    像这样,查询 6(110) 时访问路线为红色标出,查询 3(011) 时访问路线为绿色标出。答案分别为 4(100) , 6(110) 。

    字典树 ( ext{Trie}) 的插入,查询复杂度都为 (O(L)) ,这里字符串长度为 32 ,故 (L=32) 。总复杂度 (O(NL))

    Part 3 最大异或路径

    题目链接

    给定一棵 (N(Nleq 1e5)) 个节点的无根树,每个边有一个权值 (k(0leq k< 2^{31})) 。从树中任意选两个点 (x)(y) ,把 (x)(y) 路径上的所有边权异或起来,得到的结果最大是多少?

    任意选取一个点为根(假设根为 1 ),那么树上所有路径被分为两种:

    1. 经过根节点的( (x,y) 在根的不同子树中)
    2. 不经过根节点的( (x,y) 在根的相同子树中)

    设 Depth[x] 表示根节点到 (x) 路径上所有边权的异或值,那么 Depth[x] 可以根据下式通过从根出发的 BFS 求出:

    [ ext{Depth[x]=Depth[father(x)]}oplus k left( x,father(x) ight) ]

    对于情况 1 ,直接 ( ext{Depth[x]}oplus ext{Depth[y]}) 得到答案。

    情况 2 ,根到 (x) 与根到 (y) 的路径会有重叠部分,但是根据异或运算的性质( (a oplus a =0) ),假设把 Depth[x] 和 Depth[y] 异或起来,它们到根的路径上的重复边权异或后恰好为 0 。其实还是直接 ( ext{Depth[x]}oplus ext{Depth[y]}) 得到答案。

    如果对于情况 2 不理解,请看下图:

    综上,问题就变成了从 Depth[1] 到 Depth[N] 中选择 2 个数,使得这两个数异或结果最大,也就是“最大异或数对”问题,可以使用 ( ext{Trie}) 在 $O(NL) $ 的复杂度内求解。

    代码:

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<vector>
    #include<queue>
    
    //using namespace std;
    
    inline int read(){
    	int fh=1,x=0;
    	char ch=getchar();
    	while(ch<'0'||ch>'9'){
    		if(ch=='-')
    			fh=-1;
    		ch=getchar();
    	}
    	while('0'<=ch&&ch<='9'){
    		x=(x<<3)+(x<<1)+ch-'0';
    		ch=getchar();
    	}
    	return fh*x;
    }
    
    const int maxn=100005;
    
    struct Trie{//01Trie
      int tag;
      Trie *s[2];
      Trie(){
        tag=0;
        s[0]=s[1]=NULL;
      }
    };
    
    struct Trie *root;//root is an empty node
    
    Trie* New(){
      Trie *node=new Trie;
      //按道理来说应该使用内存池而不是new,因为new速度慢
      //但是在使用内存池时,我一发精妙空间计算后MLE了,索性改成new,这样不用计算内存池大小了
      node->s[0]=node->s[1]=NULL;
      return node;
    }
    
    void Insert(const int *str,const int len){
      Trie *p=root;
      for(int i=0;i<len;++i){
        if(p->s[str[i]]==NULL)
          p->s[str[i]]=New();
        p=p->s[str[i]];
      }
      p->tag++;
    }
    
    int Get_maxxor(const int *str,const int len){
      Trie *p=root;
      int ans[50],it=0,sum=0;
      for(int i=0;i<len;++i){//尝试向不同数字方向访问
        if(p->s[str[i]^1]==NULL)
          p=p->s[str[i]],ans[it++]=0;
        else p=p->s[str[i]^1],ans[it++]=1;
      }
      for(int i=0,j=it-1;i<32;++i,--j)//还原答案为10进制
        sum+=ans[i]*pow(2,j);
      return sum;
    }
    
    int n;
    int D[maxn],visit[maxn];
    std::vector< std::pair<int,int> >v[maxn];
    
    void bfs(const int s){//预处理Depth数组
      std::queue<int>Q;
      Q.push(s);
      visit[s]=1;
      D[s]=0;
      while(Q.size()){
        int x=Q.front();
        Q.pop();
        for(int i=0;i<v[x].size();++i){
          int y=v[x][i].first;
          if(visit[y]) continue;
          Q.push(y);
          visit[y]=1;
          D[y]=D[x]^v[x][i].second;
        }
      }
    }
    
    int turn[35];
    inline void Turn(int x){//改为32位2进制数
      memset(turn,0,sizeof turn);
      int i=31;
      while(x){
        if(x&1) turn[i--]=1;
        else turn[i--]=0;
        x>>=1;
      }
    }
    
    signed main(){
      root=New();
      n=read();
      for(int i=1,x,y,z;i<=n-1;++i){
        x=read(),y=read(),z=read();
        v[x].push_back(std::make_pair(y,z));
        v[y].push_back(std::make_pair(x,z));
      }
      bfs(1);
      for(int i=1;i<=n;++i){
        Turn(D[i]);
        Insert(turn,32);
      }
      int ans=0;
      for(int i=1;i<=n;++i){
        Turn(D[i]);
        ans=std::max(ans,Get_maxxor(turn,32));
      }
      printf("%d
    ",ans);
      return 0;
    }
    

    本博客部分证明、例题参考了《算法竞赛进阶指南》,作者李煜东,特此注明。

    繁华尽处, 寻一静谧山谷, 筑一木制小屋, 砌一青石小路, 与你晨钟暮鼓, 安之若素。
  • 相关阅读:
    multiprocessing.Pool报pickling error
    Python 数据库的Connection、Cursor两大对象
    python中的tcp示例详解
    Python网络编程篇之select和epoll
    python select epoll poll的解析
    python网络编程——IO多路复用之epoll
    python实现并发服务器实现方式(多线程/多进程/select/epoll)
    python select模块
    CRM客户关系管理系统(七)
    CRM客户关系管理系统(六)
  • 原文地址:https://www.cnblogs.com/zaza-zt/p/14956412.html
Copyright © 2020-2023  润新知