• 双向(折半)搜索


    双向(折半)搜索

    Part 1:双向搜索概念与朴素复杂度分析

    双向搜索是对于深度优先搜索的一种优化,它的基本思想是:把(dfs)从一端开始改为从两端开始,从而有效减少搜索状态

    如果上面的定义不懂的话,请看下面两这张图(设(n)是搜索层数):

    图片爆炸了OvO

    上面这个图就是普通的(dfs)在每次拓展两个节点的情况下所产生的的搜索树的形状

    这棵搜索树,每一个节点都代表了一次递归调用,我们很容易可以看出来它的复杂度是(O(2^n))(满二叉树情况下)(其实减不减1无所谓了)

    图片爆炸了OvO

    下面这个是双向搜索所产生的两棵搜索树(一颗红色,一颗蓝色)

    我们在这两棵搜索树上分别得到了(4)(2)种结果,现在组合一下(绿色部分),得到了(4*2=8)种结果,和原来的搜索结果一样

    那么分析复杂度:我们一次搜索的复杂度(O(2^frac{n+2}{2})),两次搜索就是(O(2^{frac{n+4}{2}}))

    如果我们朴素的统计答案,那么一次搜索会产生(2^{frac{n}{2}})种结果,两次则平方,变成了(2^n)次统计

    把复杂度相加:总复杂度是(O(2^{frac{n+4}{2}}+2^n))

    Q:怎么还慢了呢?混蛋!

    A:(没错就是慢了)

    Q:那你讲个P!(握紧小拳头)

    A:(先别打,先别打!我还没讲完呢!)

    Part 2:真正的双向搜索复杂度分析

    上面的方法慢了,主要原因是我们选择了“朴素”的统计答案

    考虑怎么优化:我们统计答案的第一步就是判断这个组合得到的最终答案合不合法

    那么,我们可以考虑对其中一个答案数组排序,然后以另一个答案数组为查找元素进行二分查找

    假设找到一个元素,因为在它之前的元素一定小于它,所以在这个元素之前的元素也都合法,这样我们就不用一个一个的统计答案了,提高了效率

    分析这么做的时间复杂度:

    (sort())快速排序一遍(O(frac{n}{2}logn))

    进行(frac{n}{2})次二分查找,(O(frac{n}{2}logn))

    统计答案总复杂度:(O(nlogn))

    算法总复杂度:(O(2^{frac{n+4}{2}}+nlogn))

    这不就快了吗

    Part 3:例题

    传送门:https://www.luogu.com.cn/problem/P4799

    题目中要求我们求出在不超过总预算的情况下,小B去看比赛的方案数

    首先,数据范围(nleq 40),普通的(dfs)肯定会(TLE)的飞起,我们考虑双向搜索

    (Mid=frac{n}{2}),我们第一次从(1)搜索到(Mid),把答案记录到序列(a)中,第二次从(Mid+1)搜索到(n)答案记录到序列(b)

    现在统计答案,从(a)(b)中任选一个序列进行快速排序,(这里排哪个应该对时间有影响,但是不大),这里假设我们对(b)排序

    我们的满足答案的状态是:(a_i+b_j<=m),所以我们对(a)数组(for)一遍,在(b)数组中二分查找第一个大于(m-a_i)的元素

    假设第一个大于(m-a_i)的元素是(b_j),那么在(j)之前的元素一定也符合条件(因为(b)序列单调不降),于是(ans+=j)

    另外,因为我们搜索时会进行一些特判和剪枝,所以我们搜索和统计答案的复杂度比上面推出来的式子低,总复杂度也远远低于(O(2^{frac{n+4}{2}}+nlogn))

    (Code)

    #include<cstdio>
    #include<utility>
    #include<algorithm>
    typedef long long int ll;
    const ll maxn=(1<<20)+10;//产生的最大状态数是2^20
    ll n,m,price[45],ida,idb,a[maxn],b[maxn],ans;//不开long long见祖宗
    //n场比赛,m预算,price[i]表示第i场收费,ida为a数组的迭代器,idb是b数组的迭代器,ans统计答案
    inline ll read(){
    	ll x=0,fh=1;
    	char ch=getchar();
    	while(ch<'0'||ch>'9'){ if(ch=='-') fh=-1;ch=getchar(); }
    	while('0'<=ch&&ch<='9'){ x=(x<<3)+(x<<1)+ch-'0';ch=getchar(); }
    	return x*fh;
    }//瞎写的快读
    void dfs(ll num,ll u,ll end,ll turn){
    //num表示枚举到第num场比赛,u表示已使用预算,end表示搜到第几场比赛停止,turn表示这是第几轮搜索
    	if(num==end+1){//如果搜到了end+1场比赛,则已经完成搜索,记录答案
    		if(turn==1){ a[ida]=u;ida++; }//第一轮记录到a中,迭代器++
    		else{ b[idb]=u;idb++; }//第二轮记录到b中迭代器++
    		return;
    	}
    	dfs(num+1,u,end,turn);//第num场比赛不看
    	if(u+price[num]<=m)//剪枝,如果要看第num场比赛,那么先判断钱够不够,不够的话看个寂寞,直接跳过搜索
    		dfs(num+1,u+price[num],end,turn);
    }
    int main(){
    	n=read(),m=read();
    	for(ll i=1;i<=n;i++)
    		price[i]=read();//快速读入
    	ll Mid=(n>>1);//取中点Mid
    	dfs(1,0,Mid,1);//第一次搜索
    	dfs(Mid+1,0,n,2);//第二次搜索
    	std::sort(b,b+idb);//对b序列排序
    	for(ll i=0;i<ida;i++){
    		ll qwq=std::upper_bound(b,b+idb,m-a[i])-b;
                    //在b中二分查找第一个大于n-a[i]的元素
    		ans+=qwq;//答案加上该元素的下标,分析如上
    	}
    	printf("%lld
    ",ans);//输出答案
    	return 0;
    }
    

    感谢您的阅读(OvO)

  • 相关阅读:
    爬取豆瓣影评1寻找json格式的电影信息
    打开SSM项目后打开tomcat找不到路径问题
    爬取豆瓣影评2完整代码
    打开SSM项目无法启动问题补充
    使用python制作国民经济行业国标的json格式
    MVC前端AJAX向后端传递数据——正常传值
    国民经济行业维度清洗,将数据清洗成标准的四级信息。
    使用vue的element组件网址
    Mybais中sql语句的抽取
    mybatis找不到mapper_Springboot整合Mybatis
  • 原文地址:https://www.cnblogs.com/zaza-zt/p/13360679.html
Copyright © 2020-2023  润新知