• AtCoder ABC 129F Takahashi's Basics in Education and Learning


    题目链接:https://atcoder.jp/contests/abc129/tasks/abc129_f

    题目大意

      给定一个长度为 L ,首项为 A,公差为 B 的等差数列 S,将这 L 个数拼起来,记作 N,求 N % M。

    分析

      设 bit(i) 为第 i 项所需要进行的十进制位移。
      则 $N = S_0 * 10^{bit(0)} + S_1 * 10^{bit(1)} + dots + S_{L - 1} * 10^{bit(L - 1)}$。
      一项一项地算是肯定要超时的,不过注意到等差数列的每一项都小于 1018 ,因此很多项的长度是相等的,也就是说有很多 bit(i) 也是等差数列。
      于是我们可以按照位数给等差数列分组,最多可分 18 组。
      举个例子,在区间 [L, R] 上,每一项长度都为 k。
      记这个区间上所表示的数为 A(k),A(k) 的每一项设为 $a_i, (L leq i leq R)$,则 $a_i = S_i * 10^{bit(i)}, A(k) = sum_{i = L}^{R} a_i$。
      不难看出$A(k) = 10^{bit(L)} * sum_{i = L}^{R} (S_i * 10^{(R - i) * k})$,只要处理后一部分即可。
      设 $ret(j) = sum_{i = L}^{j} (S_i * 10^{(j - i) * k}), (L leq j leq R)$。
      则有 $ret(j + 1) = ret(j) * 10^k + S_{j + 1}$,不妨设 ret(L - 1) = 0。
      于是我们可以构造如下系数矩阵 X:
    $$
    X = egin{bmatrix}
    10^k & 0 & 0 \
    1 & 1 & 0 \
    0 & B & 1 \
    end{bmatrix}
    $$
      和如下矩阵 RET(j):
    $$
    RET(j) = egin{bmatrix}
    ret(j) & S_{j + 1} & 1
    end{bmatrix} 
    $$

      于是有:

    $$
    RET(j) = RET(j - 1) * X \
    RET(j) = RET(L - 1) * X^{j - L + 1}
    $$

      如此,通过矩阵快速幂,长度为 k 的一组值很快就被算出来了,然后每一组都分别算一下再加起来即可。

      PS:在实际实现过程中组与组之间是可以合并的,并不需要单独算出来每一组的余数,详细实现请看代码。

    代码如下

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
     21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 
     22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
     23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
     24  
     25 #define ms0(a) memset(a,0,sizeof(a))
     26 #define msI(a) memset(a,inf,sizeof(a))
     27 #define msM(a) memset(a,-1,sizeof(a))
     28 
     29 #define MP make_pair
     30 #define PB push_back
     31 #define ft first
     32 #define sd second
     33  
     34 template<typename T1, typename T2>
     35 istream &operator>>(istream &in, pair<T1, T2> &p) {
     36     in >> p.first >> p.second;
     37     return in;
     38 }
     39  
     40 template<typename T>
     41 istream &operator>>(istream &in, vector<T> &v) {
     42     for (auto &x: v)
     43         in >> x;
     44     return in;
     45 }
     46  
     47 template<typename T1, typename T2>
     48 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     49     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     50     return out;
     51 }
     52 
     53 inline int gc(){
     54     static const int BUF = 1e7;
     55     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     56     
     57     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     58     return *bg++;
     59 } 
     60 
     61 inline int ri(){
     62     int x = 0, f = 1, c = gc();
     63     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     64     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     65     return x*f;
     66 }
     67 
     68 template<class T>
     69 inline string toString(T x) {
     70     ostringstream sout;
     71     sout << x;
     72     return sout.str();
     73 }
     74 
     75 inline int toInt(string s) {
     76     int v;
     77     istringstream sin(s);
     78     sin >> v;
     79     return v;
     80 }
     81 
     82 //min <= aim <= max
     83 template<typename T>
     84 inline bool BETWEEN(const T aim, const T min, const T max) {
     85     return min <= aim && aim <= max;
     86 }
     87  
     88 typedef long long LL;
     89 typedef unsigned long long uLL;
     90 typedef pair< double, double > PDD;
     91 typedef pair< int, int > PII;
     92 typedef pair< int, PII > PIPII;
     93 typedef pair< string, int > PSI;
     94 typedef pair< int, PSI > PIPSI;
     95 typedef set< int > SI;
     96 typedef set< PII > SPII;
     97 typedef vector< int > VI;
     98 typedef vector< double > VD;
     99 typedef vector< VI > VVI;
    100 typedef vector< SI > VSI;
    101 typedef vector< PII > VPII;
    102 typedef map< int, int > MII;
    103 typedef map< int, string > MIS;
    104 typedef map< int, PII > MIPII;
    105 typedef map< PII, int > MPIII;
    106 typedef map< string, int > MSI;
    107 typedef map< string, string > MSS;
    108 typedef map< PII, string > MPIIS;
    109 typedef map< PII, PII > MPIIPII;
    110 typedef multimap< int, int > MMII;
    111 typedef multimap< string, int > MMSI;
    112 //typedef unordered_map< int, int > uMII;
    113 typedef pair< LL, LL > PLL;
    114 typedef vector< LL > VL;
    115 typedef vector< VL > VVL;
    116 typedef priority_queue< int > PQIMax;
    117 typedef priority_queue< int, VI, greater< int > > PQIMin;
    118 const double EPS = 1e-8;
    119 const LL inf = 0x7fffffff;
    120 const LL infLL = 0x7fffffffffffffffLL;
    121 LL mod = 1e9 + 7;
    122 const int maxN = 1e5 + 7;
    123 const LL ONE = 1;
    124 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
    125 const LL oddBits = 0x5555555555555555;
    126 
    127 struct Matrix{
    128     int row, col;
    129     LL MOD;
    130     VVL mat;
    131     
    132     Matrix(int r, int c, LL p = mod) : row(r), col(c), MOD(p) { 
    133         mat.assign(r, VL(c, 0));
    134     }
    135     Matrix(const Matrix &x, LL p = mod) : MOD(p){
    136         mat = x.mat;
    137         row = x.row;
    138         col = x.col;
    139     }
    140     Matrix(const VVL &A, LL p = mod) : MOD(p){
    141         mat = A;
    142         row = A.size();
    143         col = A[0].size();
    144     }
    145     
    146     // x * 单位阵 
    147     inline void E(int x = 1) {
    148         assert(row == col);
    149         Rep(i, row) mat[i][i] = x;
    150     }
    151     
    152     inline VL& operator[] (int x) {
    153         assert(x >= 0 && x < row);
    154         return mat[x];
    155     }
    156     
    157     inline Matrix operator= (const VVL &x) {
    158         row = x.size();
    159         col = x[0].size();
    160         mat = x;
    161         return *this;
    162     }
    163     
    164     inline Matrix operator+ (const Matrix &x) {
    165         assert(row == x.row && col == x.col);
    166         Matrix ret(row, col);
    167         Rep(i, row) {
    168             Rep(j, col) {
    169                 ret.mat[i][j] = mat[i][j] + x.mat[i][j];
    170                 ret.mat[i][j] %= MOD;
    171             }
    172         }
    173         return ret;
    174     }
    175     
    176     inline Matrix operator* (const Matrix &x) {
    177         assert(col == x.row);
    178         Matrix ret(row, x.col);
    179         Rep(k, x.col) {
    180             Rep(i, row) {
    181                 if(mat[i][k] == 0) continue;
    182                 Rep(j, x.col) {
    183                     ret.mat[i][j] += mat[i][k] * x.mat[k][j];
    184                     ret.mat[i][j] %= MOD;
    185                 }
    186             }
    187         }
    188         return ret;
    189     }
    190     
    191     inline Matrix operator*= (const Matrix &x) { return *this = *this * x; }
    192     inline Matrix operator+= (const Matrix &x) { return *this = *this + x; }
    193     
    194     inline void print() {
    195         Rep(i, row) {
    196             Rep(j, col) {
    197                 cout << mat[i][j] << " ";
    198             }
    199             cout << endl;
    200         }
    201     }
    202 };
    203 
    204 // 矩阵快速幂,计算x^y 
    205 inline Matrix mat_pow_mod(Matrix x, LL y) {
    206     Matrix ret(x.row, x.col);
    207     ret.E();
    208     while(y){
    209         if(y & 1) ret *= x;
    210         x *= x;
    211         y >>= 1;
    212     }
    213     return ret;
    214 }
    215 
    216 LL L, A, B, M, ans; 
    217 
    218 // 从数列第 st 项开始,查找区间 [L, R],使得区间内的所有数都小于 bit 大于等于 bit/10。 
    219 // 有返回 true 没有返回 false 
    220 LL st = 0, bit = 10, l, r;
    221 bool getLR() {
    222     if(st >= L || A + st * B >= bit) return false;
    223     l = st;
    224     r = L - 1;
    225     
    226     while(l < r) {
    227         LL mid = (l + r) >> 1;
    228         if(A + mid * B < bit) l = mid + 1;
    229         else r = mid;
    230     }
    231     
    232     if(A + r * B >= bit) --r;
    233     l = st;
    234     st = r + 1; // 下一个起始位置 
    235     return true;
    236 }
    237 
    238 int main(){
    239     //freopen("MyOutput.txt","w",stdout);
    240     //freopen("input.txt","r",stdin);
    241     INIT();
    242     cin >> L >> A >> B >> mod;
    243     
    244     For(i, 1, 18) { // 枚举位数 
    245         if(getLR()) {
    246             Matrix mat(3, 3); 
    247             mat[0][0] = bit % mod;
    248             mat[0][1] = mat[0][2] = mat[1][2] = mat[2][1] = 0;
    249             mat[1][0] = mat[1][1] = mat[2][2] = 1;
    250             mat[2][1] = B % mod;
    251             
    252             mat = mat_pow_mod(mat, r - l + 1);
    253             
    254             Matrix ret(1, 3); 
    255             ret[0][0] = ans;
    256             ret[0][1] = (A + l * B) % mod;
    257             ret[0][2] = 1;
    258             
    259             ret *= mat;
    260             
    261             ans = ret[0][0];
    262         }
    263         bit *= 10;
    264     }
    265     cout << ans << endl;
    266     return 0;
    267 }
    View Code
  • 相关阅读:
    Vue DatePicker和不可用
    API图片路径和超链接语义化转换
    jQuery常用插件大全
    前端面试必备技巧整理
    堆与堆排序/Heap&Heap sort
    第k大的数
    POJ 2083 Fractal 分形题目
    最大子数组问题/Maximum Subarray
    一个简单的随机数生成算法
    成绩排序
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/11100184.html
Copyright © 2020-2023  润新知