题目链接:https://vjudge.net/problem/HDU-1394
题目大意:
给定一个由 0~n-1 组成的长度为 n 序列,如果将最前面一个元素放到最后面去,就形成了一个新序列,新序列进行同样的操作可以再形成新序列,一共能形成 n 的新序列,每个序列都有一个逆序数,求其中最小的逆序数。
分析:
求出 a1 ~ an 的逆序数后,其余序列的逆序数可在O(1)时间内推出。
代码如下:
1 #pragma GCC optimize("Ofast") 2 #include <bits/stdc++.h> 3 using namespace std; 4 5 #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0); 6 #define Rep(i,n) for (int i = 0; i < (n); ++i) 7 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 8 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 9 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 10 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 11 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 12 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 13 14 #define pr(x) cout << #x << " = " << x << " " 15 #define prln(x) cout << #x << " = " << x << endl 16 17 #define LOWBIT(x) ((x)&(-x)) 18 19 #define ALL(x) x.begin(),x.end() 20 #define INS(x) inserter(x,x.begin()) 21 22 #define ms0(a) memset(a,0,sizeof(a)) 23 #define msI(a) memset(a,inf,sizeof(a)) 24 #define msM(a) memset(a,-1,sizeof(a)) 25 26 #define MP make_pair 27 #define PB push_back 28 #define ft first 29 #define sd second 30 31 template<typename T1, typename T2> 32 istream &operator>>(istream &in, pair<T1, T2> &p) { 33 in >> p.first >> p.second; 34 return in; 35 } 36 37 template<typename T> 38 istream &operator>>(istream &in, vector<T> &v) { 39 for (auto &x: v) 40 in >> x; 41 return in; 42 } 43 44 template<typename T1, typename T2> 45 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 46 out << "[" << p.first << ", " << p.second << "]" << " "; 47 return out; 48 } 49 50 typedef long long LL; 51 typedef unsigned long long uLL; 52 typedef pair< double, double > PDD; 53 typedef pair< int, int > PII; 54 typedef set< int > SI; 55 typedef vector< int > VI; 56 typedef map< int, int > MII; 57 typedef vector< LL > VL; 58 typedef vector< VL > VVL; 59 const double EPS = 1e-10; 60 const int inf = 1e9 + 9; 61 const LL mod = 1e9 + 7; 62 const int maxN = 5e3 + 7; 63 const LL ONE = 1; 64 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 65 const LL oddBits = 0x5555555555555555; 66 67 int n, ans; 68 int a[maxN]; 69 70 #define lson l , mid , rt << 1 71 #define rson mid + 1 , r , rt << 1 | 1 72 73 struct SegmentTree{ 74 int st[maxN << 2]; 75 76 inline void pushUp(int rt) { 77 st[rt] = st[rt << 1] + st[rt << 1 | 1]; 78 } 79 80 inline void pushDown(int rt) { } 81 82 inline void build(int l, int r, int rt) { 83 ms0(st); 84 } 85 86 // 单点替换,a[x] = y 87 inline void update(int x, LL y, int l, int r, int rt) { 88 if(l >= r) { 89 st[rt] = y; 90 return; 91 } 92 int mid = (l + r) >> 1; 93 if(x <= mid) update(x, y, lson); 94 else update(x, y, rson); 95 pushUp(rt); 96 } 97 98 // 区间查询 99 inline LL querySum(int L, int R, int l, int r, int rt) { 100 if(L <= l && r <= R) return st[rt]; 101 LL ret = 0; 102 int mid = (l + r) >> 1; 103 104 if(L <= mid) ret += querySum(L, R, lson); 105 if(R > mid) ret += querySum(L, R, rson); 106 return ret; 107 } 108 }; 109 SegmentTree segTr; 110 111 int main(){ 112 INIT(); 113 while(cin >> n) { 114 For(i, 1, n) { 115 cin >> a[i]; 116 ++a[i]; 117 } 118 ans = 0; 119 segTr.build(1, n, 1); 120 121 For(i, 1, n) { 122 ans += segTr.querySum(a[i], n, 1, n, 1); // 计算大于a[i]且在a[i]之前出现过的数的个数 123 segTr.update(a[i], 1, 1, n, 1); // 标记为1,表示已经出现过 124 } 125 126 int tmp = ans; 127 For(i, 1, n - 1) { 128 tmp = tmp + n - 2 * a[i] + 1; 129 ans = min(ans, tmp); 130 } 131 cout << ans << endl; 132 } 133 return 0; 134 }