• HDU


    Machine Schedule

    As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem. 

    There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0. 

    For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y. 

    Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines. 

    Input

    The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y. 

    The input will be terminated by a line containing a single zero. 

    Output

    The output should be one integer per line, which means the minimal times of restarting machine.

    Sample Input

    5 5 10
    0 1 1
    1 1 2
    2 1 3
    3 1 4
    4 2 1
    5 2 2
    6 2 3
    7 2 4
    8 3 3
    9 4 3
    0
    

    Sample Output

    3

    题目大意:有两台机器A和B,A机器有n种工作方式,B机器有m种工作方式。共有k个任务。每个任务恰好在一条机器上运行。
    如果任务在A机器上运行,就需要转换为模式Xi,如果在B机器上运行,就需要转换为模式Yi
    每台机器上的任务可以按照任意顺序执行,但是每台机器每转换一次模式需要重启一次。
    请合理为每个任务安排一台机器并合理安排顺序,使得机器重启次数尽量少。
     
    解题思路:
    把机器A的N种模式作为二分图的左部,机器B的M种模式作为二分图的右部,如果某个任务可以使用机器A的模式xi也可以使用机器B的模式yi完成,则连接xi,yi。
    题目要求使机器重启的次数要尽量少,又要把所有的任务都执行完,也就可以把题目转换成最小顶点覆盖,根据二分图的性质:最小顶点覆盖=最大匹配数。
     
     
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<string>
    #include<math.h>
    #include<queue>
    #include<set>
    #include<stack>
    #include<algorithm>
    #include<vector>
    #include<iterator>
    #define MAX 1005
    #define INF 0x3f3f3f3f
    #define MOD 1000000007
    using namespace std;
    
    typedef long long ll;
    int n,m;
    int line[MAX][MAX],used[MAX],mm[MAX];
    int find(int x){  
        int i,j;  
        for(j=1;j<=m;j++){
            if(line[x][j]&&!used[j]){
                used[j]=1;
                if(!mm[j]||find(mm[j])){
                    mm[j]=x;
                    return 1;
                }
            }
        }
        return 0;  
    }  
    int main()
    {
        int xx,x,y,k,i;
        while(scanf("%d",&n)&&n>0){
            scanf("%d%d",&m,&k);
            memset(line,0,sizeof(line));
            memset(mm,0,sizeof(mm));
            for(i=1;i<=k;i++){
                scanf("%d%d%d",&xx,&x,&y);
                if(x>0&&y>0){
                    line[x][y]=1;
                }
            }
            int c=0;
            for(i=1;i<=n;i++){
                memset(used,0,sizeof(used));
                if(find(i)) c++;
            }
            printf("%d
    ",c);
        }
        return 0;
    }
  • 相关阅读:
    java读取配置文件 xml properties的几种方法
    aix source 命令
    解决连接ORACLE错误一例:ORA01033: ORACLE 正在初始化或关闭
    oracle database character set
    spring junit 测试
    Atitit。Cas机制 软件开发 编程语言 无锁机制 java c# php
    Atitit.病毒木马的快速扩散机制原理nio 内存映射MappedByteBuffer
    Atitit.木马病毒 webftp 的原理跟个设计
    Atitit.js this错误指向window的解决方案
    Atitit.反编译apk android源码以及防止反编译apk
  • 原文地址:https://www.cnblogs.com/yzm10/p/8818103.html
Copyright © 2020-2023  润新知