Permutation Counting
Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the amount of elements where ai > i. For example, the E-value of permutation {1, 3, 2, 4} is 1, while the E-value of {4, 3, 2, 1} is 2. You are requested to find how many permutations of {1, 2, …, N} whose E-value is exactly k.
InputThere are several test cases, and one line for each case, which contains two integers, N and k. (1 <= N <= 1000, 0 <= k <= N).
OutputOutput one line for each case. For the answer may be quite huge, you need to output the answer module 1,000,000,007.Sample Input
3 0 3 1
Sample Output
1 4
Hint
There is only one permutation with E-value 0: {1,2,3}, and there are four permutations with E-value 1: {1,3,2}, {2,1,3}, {3,1,2}, {3,2,1}
数列1-n,可以随意排列组合,求恰有k个a[i]>i的排列个数。
一道找规律的dp。看数据范围就知道不能暴力求解,但可以用暴力找出n较小的几种小数列排列数,发现规律。类似杨辉三角,就像两数和靠拢,于是可以发现状态转移方程f[i][j]=(((i+1)*f[i][j-1])%MOD+((j-i)*f[i-1][j-1])%MOD)%MOD
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<string> #include<math.h> #include<queue> #include<set> #include<stack> #include<algorithm> #include<vector> #include<iterator> #define MAX 1005 #define INF 0x3f3f3f3f #define MOD 1000000007 using namespace std; typedef long long ll; ll f[MAX][MAX]; int main() { int n,m,i,j; for(i=1;i<=1000;i++){ f[0][i]=1; } for(i=1;i<=1000;i++){ for(j=i+1;j<=1000;j++){ f[i][j]=(((i+1)*f[i][j-1])%MOD+((j-i)*f[i-1][j-1])%MOD)%MOD; } } while(~scanf("%d%d",&n,&m)){ if(n==m){ printf("0 "); continue; } printf("%lld ",f[m][n]); } return 0; }