Stall Reservations
Oh those picky N (1 <= N <= 50,000) cows! They are so picky that each one will only be milked over some precise time interval A..B (1 <= A <= B <= 1,000,000), which includes both times A and B. Obviously, FJ must create a reservation system to determine which stall each cow can be assigned for her milking time. Of course, no cow will share such a private moment with other cows.
Help FJ by determining:
Help FJ by determining:
- The minimum number of stalls required in the barn so that each cow can have her private milking period
- An assignment of cows to these stalls over time
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 describes cow i's milking interval with two space-separated integers.
Lines 2..N+1: Line i+1 describes cow i's milking interval with two space-separated integers.
Output
Line 1: The minimum number of stalls the barn must have.
Lines 2..N+1: Line i+1 describes the stall to which cow i will be assigned for her milking period.
Lines 2..N+1: Line i+1 describes the stall to which cow i will be assigned for her milking period.
Sample Input
5 1 10 2 4 3 6 5 8 4 7
Sample Output
4 1 2 3 2 4
Hint
Explanation of the sample:
Here's a graphical schedule for this output:
Here's a graphical schedule for this output:
Time 1 2 3 4 5 6 7 8 9 10Other outputs using the same number of stalls are possible. //!!!
Stall 1 c1>>>>>>>>>>>>>>>>>>>>>>>>>>>
Stall 2 .. c2>>>>>> c4>>>>>>>>> .. ..
Stall 3 .. .. c3>>>>>>>>> .. .. .. ..
Stall 4 .. .. .. c5>>>>>>>>> .. .. ..
首先根据挤奶时间的先后顺序排序。。。然后将第一头牛加入优先队列。。然后就是加入优先队列的牛应该根据越早结束挤奶那么优先级更高,如果时间结束点相等,那么开始时间早的优先级高。。。
然后从前向后枚举。如果碰到有牛的挤奶时间的开始值大于优先队列的首部的结束值,那么说明这两头牛可以一起公用一个挤奶房。。然后从优先队列中删除这头牛。。那么这个问题就得到解决了。。。
开始时间升序排序,从左往右排,不会出现排在队首左边的情况。(贪心)
总结:开始时间升序排,每个条件都用上,求含不重叠子序列的最少序列数;
结束时间升序排,只用部分条件,求一个序列含不重叠子序列最多数。
#include<stdio.h> #include<algorithm> #include<queue> using namespace std; struct Node{ int x,y,no; friend bool operator<(Node a,Node b) { if(a.y==b.y) return a.x>b.x; return a.y>b.y; } }node[50005]; bool cmp(Node a,Node b) { if(a.x==b.x) return a.y<b.y; return a.x<b.x; } int a[50005]; priority_queue<Node> q; int main() { int n,c,i; scanf("%d",&n); for(i=1;i<=n;i++){ scanf("%d%d",&node[i].x,&node[i].y); node[i].no=i; } sort(node+1,node+n+1,cmp); q.push(node[1]); a[node[1].no]=1; c=1; for(i=2;i<=n;i++){ if(q.size()&&node[i].x>q.top().y){ a[node[i].no]=a[q.top().no]; q.pop(); } else{ c++; a[node[i].no]=c; } q.push(node[i]); } printf("%d ",c); for(i=1;i<=n;i++){ printf("%d ",a[i]); } return 0; }