B-number
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
InputProcess till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).OutputPrint each answer in a single line.Sample Input
13 100 200 1000
Sample Output
1 1 2 2
题意:满足含13且被13整除的个数。
“不要62”的变式,这里要“13”,统计连续两位数的另一种处理方式。
#include<bits/stdc++.h> using namespace std; typedef long long ll; int a[12]; int dp[12][2][2][15]; ll dfs(int pos,int pre,int one,int sta,bool p,bool limit){ if(pos==-1) return sta==0&&p; if(!limit&&dp[pos][one][p][sta]>-1) return dp[pos][one][p][sta]; int up=limit?a[pos]:9; int cnt=0; for(int i=0;i<=up;i++){ if(pre==1&&i==3) cnt+=dfs(pos-1,i,i==1,(sta*10+i)%13,true,limit&&i==a[pos]); else cnt+=dfs(pos-1,i,i==1,(sta*10+i)%13,p,limit&&i==a[pos]); } if(!limit) dp[pos][one][p][sta]=cnt; return cnt; } int solve(int x){ int pos=0; while(x){ a[pos++]=x%10; x/=10; } return dfs(pos-1,0,0,0,false,true); } int main() { int r; memset(dp,-1,sizeof(dp)); while(~scanf("%d",&r)){ printf("%d ",solve(r)); } return 0; }