• 【题解】JSOIWC2019 Round 5


    题面:

    题解:

    T1:

    算法1:

    枚举每个灯塔的方向,并分别判断是否有解。时间复杂度O(K*4^K)。

    预计得分:50-70分

    算法2:

    不难发现,当k≥4的时候一定有解,将最靠左的两个下面的朝右上、上面的朝右下。最右边的两个做同样的处理。不难发现这样一定可以覆盖整个场地。

    与算法1结合后可以期望获得100分

    # include <bits/stdc++.h>
    using namespace std;
    namespace Base{
    	# define mr make_pair
    	typedef long long ll;
    	typedef double db;
    	const int inf = 0x3f3f3f3f, INF = 0x7fffffff;
    	const ll  infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll;
    	template<typename T> void read(T &x){
        	x = 0; int fh = 1; double num = 1.0; char ch = getchar();
    		while (!isdigit(ch)){ if (ch == '-') fh = -1; ch = getchar(); }
    		while (isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); }
    	    if (ch == '.'){
    	    	ch = getchar();
    	    	while (isdigit(ch)){num /= 10; x = x + num * (ch - '0'); ch = getchar();}
    		}
    		x = x * fh;
    	}
    	template<typename T> void chmax(T &x, T y){x = x < y ? y : x;}
    	template<typename T> void chmin(T &x, T y){x = x > y ? y : x;}
    }
    using namespace Base;
    
    const int K = 110;
    struct Point{
    	int x, y;
    }p[K], t[K], a[K], b[K];
    int k, n, mu[K], flag;
    void check(){
    	int lim = (1 << k);
    	ll sum = 0;
    	for (int i = 1; i < lim; i++){
    		int num = 0;
    		int ax = 0, ay = 0, bx = n - 1, by = n - 1;
    		for (int j = 1; j <= k; j++)
    			if ((i & (1 << (j - 1))) != 0){
    				num++;
    				ax = max(a[j].x, ax);
    				ay = max(a[j].y, ay);
    				bx = min(b[j].x, bx);
    				by = min(b[j].y, by);
    			}
    		if (ax <= bx && ay <= by)
    			sum = sum + mu[num] * 1ll * (bx - ax) * (by - ay);
    	}
    	if (sum == 1ll * (n - 1) * (n - 1)) flag = true;
    }
    
    void dfs(int x){
    	if (x > k){
    		check();
    		return;
    	}
    	for (int i = 0; i < 4; i++){
    		a[x].x = min(p[x].x, t[i].x);
    		a[x].y = min(p[x].y, t[i].y);
    		b[x].x = max(p[x].x, t[i].x);
    		b[x].y = max(p[x].y, t[i].y);
    		dfs(x + 1);
    	}	
    }
    int main(){
    	freopen("lighting.in", "r", stdin);
    	freopen("lighting.out", "w", stdout);
    	mu[0] = -1;
    	for (int i = 1; i < K; i++) mu[i] = mu[i - 1] * (-1);
    	int op; read(op);
    	while (op--){
    		read(k); read(n);
    		for (int i = 1; i <= k; i++)
    			read(p[i].x), read(p[i].y);
    		flag = false;
    		if (k > 4) {
    			printf("yes
    ");
    			continue;
    		}
    		t[0].x = 0, t[0].y = 0; 
    		t[1].x = n - 1, t[1].y = 0;
    		t[2].x = 0, t[2].y = n - 1;
    		t[3].x = n - 1, t[3].y = n - 1;
    		dfs(1);
    		if (flag == true)
    			printf("yes
    ");
    			else printf("no
    ");
    	}
    	return 0;
    }
    

    T2:

    算法0:

    对于如何还原串中的一段,可以用类似线段树查询的方式做,时间复杂度O(N+R-L)。

    算法1:

    枚举每个玩家的出拳方法。时间复杂度O(3^(2^N)*(2^N))。

    预计得分:20分

    算法2:

    不难发现,当我们确定最后的获胜者后,我们可以倒推出每一轮比赛的情况。同时我们可以正着推出每一层每个出拳方式的字典序大小关系。所以,当我们确定了最后的情况。我们可以花O(2^N)的时间还原出初始情况。

    预计得分:40分

    算法3:

    其实我们不用还原出整个过程,只要知道底层每种出拳方式有多少个即可。用高精度计算即可。

    预计得分:70分(其实取模就可以过了)

    算法4:

    再次观察后,我们发现。在一层中,每种出拳方式的数量的差不大于1。当我们有差和层数时,我们可以O(1)判断一个状态是否合法。

    预计得分:100分

    # include <bits/stdc++.h>
    
    namespace Base{
    	# define mr make_pair
    	typedef long long ll;
    	typedef double db;
    	const int inf = 0x3f3f3f3f, INF = 0x7fffffff;
    	const ll  infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll;
    	template<typename T> void read(T &x){
        	x = 0; int fh = 1; double num = 1.0; char ch = getchar();
    		while (!isdigit(ch)){ if (ch == '-') fh = -1; ch = getchar(); }
    		while (isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); }
    	    if (ch == '.'){
    	    	ch = getchar();
    	    	while (isdigit(ch)){num /= 10; x = x + num * (ch - '0'); ch = getchar();}
    		}
    		x = x * fh;
    	}
    	template<typename T> void chmax(T &x, T y){x = x < y ? y : x;}
    	template<typename T> void chmin(T &x, T y){x = x > y ? y : x;}
    }
    using namespace Base;
    
    const int N = 300010, P = 998244353;
    
    struct INT{
    	int n[N], len;
    	void GetFromSt(char *st){
    		len = strlen(st);
    		for (int i = 0; i < len; i++) n[i] = st[len - i - 1] - '0';
    	}
    }num[4], tmp;
    bool operator >=(INT &x, INT &y){
    	if (x.len > y.len) return true;
    	if (x.len < y.len) return false;
    	for (int i = x.len - 1; i >= 0; i--){
    		if (x.n[i] > y.n[i]) return true;
    		if (x.n[i] < y.n[i]) return false;
    	}
    	return true;
    }
    INT operator -(INT a, INT &b){
    	for (int i = 0; i < a.len; i++)
    		a.n[i] -= b.n[i];
    	for (int i = 0; i < a.len; i++)
    		if (a.n[i] < 0) a.n[i] += 10, a.n[i + 1] -= 1;
    	while (a.len > 0 && a.n[a.len - 1] == 0) a.len--;
    	return a;
    }
    int n, op;
    const int to[] = {-1, 0, 2, 1, 4, 5, 3, -1};
    ll h[N][3], mul[N];
    int rk[N][3], tnp[3];
    char st[N], mp[3], l[N], r[N];
    void error(){
    	printf("-1
    ");
    	exit(0);
    }
    void solve(int id, int now, int tag){
    	if (id == 0){
    		printf("%c", mp[now]);
    		return;
    	}
    	int nowl = now, nowr = (now + 1) % 3;
    	if (rk[id - 1][nowl] > rk[id - 1][nowr]) std::swap(nowl, nowr);
    	if ((tag & 1) != 0){
    		if (r[id] == '0' && (tag & 2) == 0)
    			solve(id - 1, nowl, 1);
    			else solve(id - 1, nowl, 3);
    	}
    	else {
    		if (l[id] == '0'){
    			if (r[id] == '0' && (tag & 2) == 0)
    				solve(id - 1, nowl, 0);
    				else solve(id - 1, nowl, 2);
    		}
    	}
    	if ((tag & 2) != 0){
    		if (l[id] == '1' && (tag & 1) == 0)
    			solve(id - 1, nowr, 2);
    			else solve(id - 1, nowr, 3);
    	}
    	else {
    		if (r[id] == '1'){
    			if (l[id] == '1' && (tag & 1) == 0)
    				solve(id - 1, nowr, 0);
    				else solve(id - 1, nowr, 1);
    		}
    	}
    }
    int main(){
    	freopen("rsp.in", "r", stdin);
    	freopen("rsp.out", "w", stdout);
    	read(n); read(op);
    	scanf("
    %s", st); num[1].GetFromSt(st);
    	scanf("
    %s", st); num[2].GetFromSt(st);
    	scanf("
    %s", st); num[0].GetFromSt(st);
    	num[3] = num[0]; tmp.len = 1; tmp.n[0] = 2;
    	if (num[3] >= num[1]) num[3] = num[1];
    	if (num[3] >= num[2]) num[3] = num[2];
    	num[0] = num[0] - num[3]; if (num[0] >= tmp) error();
    	num[1] = num[1] - num[3]; if (num[1] >= tmp) error();
    	num[2] = num[2] - num[3]; if (num[2] >= tmp) error();
    	int tag = (num[0].n[0]) + (num[1].n[0] << 1) + (num[2].n[0] << 2);
    	tag = to[tag];
    	tag = ((tag - n) % 6 + 6) % 6;
    	tag = tag / 2;
    	rk[0][0] = 0, rk[0][1] = 1, rk[0][2] = 2;
    	h[0][0] = 'P', h[0][1] = 'R', h[0][2] = 'S'; mul[0] = 233;
    	for (int i = 1; i <= n; i++){
    		mul[i] = mul[i - 1] * mul[i - 1] % P;
    		rk[i][0] = std::min(rk[i - 1][0], rk[i - 1][1]) * 3 + std::max(rk[i - 1][0], rk[i - 1][1]);
    		rk[i][1] = std::min(rk[i - 1][1], rk[i - 1][2]) * 3 + std::max(rk[i - 1][1], rk[i - 1][2]);
    		rk[i][2] = std::min(rk[i - 1][2], rk[i - 1][0]) * 3 + std::max(rk[i - 1][2], rk[i - 1][0]);
    		for (int j = 0; j < 3; j++) tnp[j] = (rk[i][j] > rk[i][0]) + (rk[i][j] > rk[i][1]) + (rk[i][j] > rk[i][2]);
    		for (int j = 0; j < 3; j++){
    			rk[i][j] = tnp[j];
    			if (rk[i - 1][j] < rk[i - 1][(j + 1) % 3]) 
    				h[i][j] = (h[i - 1][j] + h[i - 1][(j + 1) % 3] * mul[i - 1]) % P;
    				else h[i][j] = (h[i - 1][(j + 1) % 3] + h[i - 1][j] * mul[i - 1]) % P;
    		}
    	}
    	if (op != 2) printf("%lld
    ", h[n][tag]);
    	if (op == 1) exit(0);
    	scanf("
    %s", l + 1);
    	for (int i = 1; i <= n / 2; i++) std::swap(l[i], l[n - i + 1]);
    	scanf("
    %s", r + 1);
    	for (int i = 1; i <= n / 2; i++) std::swap(r[i], r[n - i + 1]);
    	mp[0] = 'P', mp[1] = 'R', mp[2] = 'S';
    	solve(n, tag, 0);
    	printf("
    ");
    	return 0;
    }
    

    T3:

    算法1:

    k=1时随便做做,预计得分0-10

    算法2:

    n≤1000, k≤4,dp统计答案,复杂度O(nvk),

    预计得分10。

    以下所有多项式的均为卷积(不会啊qaq)。

    算法3:

    考虑生成函数,以Vi为下标,数量为系数建立多项式f1,那么f1f1就是选两个的方案数。但是这样会有重复,(a,b)与(b,a)会算2次,同时会把(a,a)算进来,那么我们建立多项式f2表示一个物品取两次。那么当k=2时,ans=(f1f1-f2)/2;

    预计额外得分20

    算法4:

    考虑算法3的拓展,记多项式f3为一个物品取三次,那么根据容斥原理,k=3时ans=(f1f1f1-3f2f1+2f3)/6,f2f1表示其中有两个或以上的物品相同,那么在f1f1f1中,一个f2f1会出现三次,即(a,a,b),(a,b,a),(b,a,a),f2f1中也会有f3出现,所以要减去三个f3,但是f1f1f1中本身还有一个f3所以还要减去一个。

    预计额外得分30

    算分5:

    考虑进一步拓展,形式无非就f1f1f1f1,f2f2,f3f1,f2f1f1,f4这几种情况,剩下的问题就是配容斥系数,因为k只有4容斥系数可以手算出来。最终答案是:
    Ans=(f1
    f1f1f1+8f3f1+3f2f2-6f2f1f1-6f4)/24

    预计额外得分40

    将算法1,3,4,5拼在一起即可得到满分,时间复杂度O(V log V)

    # include <bits/stdc++.h>
    # define 	ll 		long long
    using namespace std;
    
    const int T = 100001, N = 600001;  
    ll ans[N];
    int read(){
    	int tmp=0, fh=1; char ch=getchar();
    	while (ch<'0'||ch>'9'){if (ch=='-') fh=-1; ch=getchar();}
    	while (ch>='0'&&ch<='9'){tmp=tmp*10+ch-'0'; ch=getchar();}
    	return tmp*fh;
    }
    namespace Transform{
    	const int P = 998244353, G = 3;
    	int power(int x, int y){
    		int i = x; x = 1;
    		while (y > 0){
    			if (y % 2 == 1) x = 1ll * i * x % P;
    			i = 1ll * i * i % P;
    			y /= 2;
    		}
    		return x;
    	}
    	void NTT(int *a, int l, int tag){
    		for (int i = 0, j = 0; i < l; i++){
    			if (i > j) swap(a[i], a[j]);
    			for (int k = (l >> 1); (j ^= k) < k; k >>= 1);
    		}
    		for (int i = 1; i < l; i <<= 1){
    			int wn = power(G, (P - 1) / (i * 2));
    			if (tag == -1) wn = power(wn, P - 2);
    			for (int j = 0; j < l; j += i + i){
    				int w = 1;
    				for (int k = 0; k < i; k++, w = 1ll * w * wn % P){
    					int x = a[k + j], y = 1ll * w * a[k + j + i] % P;
    					a[k + j] = (x + y) % P, a[k + j + i] = (x - y + P) % P; 
    				}
    			}
    		}
    		if (tag == -1){
    			int in = power(l, P - 2);
    			for (int i = 0; i < l; i++) a[i] = 1ll * a[i] * in % P;
    		}
    	}
    }
    using namespace Transform; 
    int num1[N], num2[N], num3[N], num4[N], now1[N], now2[N], now3[N], now4[N], len, nn, n, m, k;
    void print(){
    	int sum = 0; 
    	for (int i = 0; i < N; i++)
    		sum = sum ^ (1ll * ans[i] * i % P);
    	printf("%d
    ", sum);  
    }
    int main(){
    	freopen("energy.in","r",stdin);
    	freopen("energy.out","w",stdout);
    	int inv2 = power(2, P - 2), inv6 = power(6, P - 2), inv24 = power(24, P - 2);
    	n = read(), k = read(); 
    	for (int i = 1; i <= n; i++) num1[read()]++;
    	for (int i = 1; i <= T; i++) num2[i * 2]= num1[i], num3[i * 3] = num1[i], num4[i * 4] = num1[i];
    	len = T * 4 + 1;
    	nn = 1; while (nn < len) nn <<= 1;
    	if (k == 1){
    		for (int i = 0; i < nn; i++) ans[i] = num1[i];
    		print();
    		return 0;
    	}
    	
    	if (k == 2){
    		NTT(num1, nn, 1);
    		for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P;
    		NTT(now1, nn, -1); 
    		for (int i = 0; i < nn; i++) ans[i] = 1ll * (now1[i] - num2[i] + P) * inv2 % P;
    		print();
    		return 0;
    	}	
    	
    	if (k == 3){
    		NTT(num1, nn, 1); NTT(num2, nn, 1);
    		for (int i = 0; i < nn; i++) now2[i] = 1ll * num2[i] * num1[i] % P;
    		NTT(now2, nn, -1);
    		for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P * num1[i] % P;
    		NTT(now1, nn, -1);
    		for (int i = 0; i < nn; i++) ans[i] = (1ll * (now1[i] - 3ll * now2[i] + 2ll * num3[i]) % P * inv6 % P + P) % P;
    		print();
    		return 0;
    	}
    	
    	if (k == 4){
    		NTT(num1, nn, 1); NTT(num2, nn, 1); NTT(num3, nn, 1);
    		for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P * num1[i] % P * num1[i] % P;
    		NTT(now1, nn, -1);
    		for (int i = 0; i < nn; i++) now2[i] = 1ll * num3[i] * num1[i] % P;
    		NTT(now2, nn, -1);
    		for (int i = 0; i < nn; i++) now3[i] = 1ll * num2[i] * num2[i] % P;
    		NTT(now3, nn, -1);
    		for (int i = 0; i < nn; i++) now4[i] = 1ll * num2[i] * num1[i] % P * num1[i] % P;
    		NTT(now4, nn, -1);
    		for (int i = 0; i < nn; i++) ans[i] = (1ll * (now1[i] + 8ll * now2[i] + 3ll * now3[i] - 6ll * now4[i] - 6ll *num4[i]) * inv24 % P + P) % P;
    		print();
    		return 0;
    	}
    	return 0;
    }
    
    

    我觉得这很不提高膜你赛qaq(还是我太菜了)

  • 相关阅读:
    Windows程序设计03:创建窗口类
    Android学习笔记19:ImageView实现图片适屏与裁剪
    设计模式01:统一建模语言UML基础知识
    串口通信与编程01:串口基础知识
    Windows程序设计01:在VS2008上新建Windows应用程序项目
    设计模式02:面向对象设计原则
    Windows程序设计02:永恒的Hello World
    Android学习笔记20:Http协议及Java Web编程
    Android学习笔记18:自定义Seekbar拖动条式样
    从 2.4 到 2.6:Linux 内核可装载模块机制的改变对设备驱动的影响
  • 原文地址:https://www.cnblogs.com/yzhang-rp-inf/p/10343189.html
Copyright © 2020-2023  润新知