我们看题面,让求对于区间([a,b])内的整数x和([c,d])内的y,满足$ gcd(x,y)=k$的数对的个数
我们珂以跟容斥原理(二维前缀和)一样来求答案:
设(solve(x,y,k))表示对于区间([1,x])内的整数x和([1,y])内的y,满足(gcd(x,y)=k)的数对的个数
那么答案(ans=solve(b,d,k)-solve(a-1,d,k)-solve(b,c-1,k)+solve(a-1,c-1,k))
那么solve怎么写呢?
设F(n)表示满足(gcd(x,y)\%t=0)的数对个数,f(t)表示满足(gcd(x,y)=t)的数对个数,实际上答案就是f(k)
这就满足莫比乌斯反演的关系式了
显然我们珂以得知(F(t)=(b/t)*(d/t))
我们根据反演的第二个公式便珂以得出
$$f(k)=sum_{n|k}mu(frac{k}{n})F(k)$$
再加上整除分块就珂以了
#include <bits/stdc++.h>
#define N 50005
#define ll long long
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register ll x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
int miu[N],v[N],sum[N];
inline ll solve(register int a,register int b,register int k)
{
int maxround=Min(a/k,b/k);
ll ans=0;
for(register int l=1,r;l<=maxround;l=r+1)
{
r=Min((a/k)/((a/k)/l),(b/k)/((b/k)/l));
ans+=(ll)((a/k)/l)*((b/k)/l)*(sum[r]-sum[l-1]);
}
return ans;
}
int main()
{
for(register int i=1;i<=N;++i)
miu[i]=1,v[i]=0;
for(register int i=2;i<=N;++i)
{
if(v[i])
continue;
miu[i]=-1;
for(register int j=i<<1;j<=N;j+=i)
{
v[j]=1;
if((j/i)%i==0)
miu[j]=0;
else
miu[j]*=-1;
}
}
for(register int i=1;i<=N;++i)
sum[i]=sum[i-1]+miu[i];
int t=read();
while(t--)
{
int a=read()-1,b=read(),c=read()-1,d=read(),k=read();
ll ans=solve(b,d,k)-solve(a,d,k)-solve(b,c,k)+solve(a,c,k);
write(ans),puts("");
}
return 0;
}