• 2-Sat小结


    关于2-sat,其实就是一些对于每个问题只有两种解,一般会给出问题间的关系,比如and,or,not等关系,判定是否存在解的问题。。

    具体看http://blog.csdn.net/jarjingx/article/details/8521690,该博客写得很不错的。

    下面是LRJ白书上给的2-sat,个人觉得写的很不错。。效率也很高。

     1 #define maxn 500
     2 struct TwoSat{
     3      int n;
     4      vector<int> G[maxn * 2];
     5      bool mark[maxn * 2];
     6      int S[maxn * 2], c;
     7      bool dfs(int x){ // 搜索一组解 
     8           if (mark[x^1]) return false; //出现冲突 
     9           if (mark[x]) return true;
    10           mark[x] = true;
    11           S[c++] = x;
    12           for (int i = 0; i < G[x].size(); ++i)
    13               if (!dfs(G[x][i])) return false;
    14           return true;
    15      }
    16 
    17      void init(int n){
    18           this->n = n;
    19           for (int i = 0; i < 2 * n; ++i)
    20               G[i].clear();
    21           memset(mark, 0, sizeof(mark));
    22      }
    23 
    24      void add_clause(int x, int xv, int y, int yv){
    25            x = x * 2 + xv;
    26            y = y * 2 + yv; //x,y不能同时存在,那么如果选了y,合法解必定要选x^1
    27            G[x].push_back(y^1); 
    28            G[y].push_back(x^1); 
    29      }
    30 
    31      bool solve(){
    32            for (int i = 0; i < n * 2; i += 2)
    33                if (!mark[i] && !mark[i+1]){
    34                     c = 0;
    35                     if (!dfs(i)){ //枚举2种取值都无解 
    36                           while (c > 0) mark[S[--c]] = false;
    37                           if (!dfs(i+1)) return false;
    38                     }
    39                }
    40            return true;
    41      }
    42 };

    下面是poj上经典2-sat题目:

    Poj2296:http://www.cnblogs.com/yzcstc/p/3588099.html

    PoJ2723:

    题意:

           有m道门,每到门上有两把锁,打开其中的一把锁就能打开这道门,有2n把不同的钥匙,每把对应一种锁,这些钥匙被分成n对,每队钥匙只能取其中的一把,取了一把之后另一把就会消失,然后给出每一道门对应的钥匙,求解能打开的门的最大数量.注意,必须打开这一道门才能通往下一个门

    思路:

          二分一下答案,那么就转化为判定问题。接下去就是2-sat问题了

          对于同一对钥匙a和b,属于互斥关系,添加a->~b, b->~a边

          对于同一个门的两个钥匙,属于or的 关系,即~a与~b互斥,添加~a->b, ~b->a的边

         Code:

         

      1 /*
      2  * Author:  Yzcstc
      3  * Created Time:  2014/3/8 17:14:52
      4  * File Name: Poj2723.cpp
      5  */
      6 #include<cstdio>
      7 #include<iostream>
      8 #include<cstring>
      9 #include<cstdlib>
     10 #include<cmath>
     11 #include<algorithm>
     12 #include<string>
     13 #include<map>
     14 #include<set>
     15 #include<vector>
     16 #include<queue>
     17 #include<stack>
     18 #include<ctime>
     19 #define M0(x) memset(x, 0, sizeof(x))
     20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
     21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
     22 #define PB push_back
     23 #define Inf 0x3fffffff
     24 #define eps 1e-8
     25 typedef long long LL;
     26 using namespace std;
     27 #define maxn 40000
     28 int p[maxn];
     29 int X[maxn], Y[maxn], n, m, a[maxn], b[maxn];
     30 struct TwoSat{
     31      int n;
     32      vector<int> G[maxn * 2];
     33      bool mark[maxn * 2];
     34      int S[maxn * 2], c;
     35      bool dfs(int x){ // 搜索一组解 
     36           if (mark[x^1]) return false; //出现冲突 
     37           if (mark[x]) return true;
     38           mark[x] = true;
     39           S[c++] = x;
     40           for (int i = 0; i < G[x].size(); ++i)
     41               if (!dfs(G[x][i])) return false;
     42           return true;
     43      }
     44 
     45      void init(int n){
     46           this->n = n;
     47           for (int i = 0; i < 2 * n; ++i)
     48               G[i].clear();
     49           memset(mark, 0, sizeof(mark));
     50      }
     51 
     52      void add_clause(int x, int xv, int y, int yv){
     53            x = x * 2 + xv;
     54            y = y * 2 + yv; //x,y不能同时存在,那么如果选了y,合法解必定要选x^1
     55            G[x^1].push_back(y);  
     56            G[y^1].push_back(x);
     57      }
     58 
     59      bool solve(){
     60            for (int i = 0; i < n * 2; i += 2)
     61                if (!mark[i] && !mark[i+1]){
     62                     c = 0;
     63                     if (!dfs(i)){ //枚举2种取值都无解 
     64                           while (c > 0) mark[S[--c]] = false;
     65                           if (!dfs(i+1)) return false;
     66                     }
     67                }
     68            return true;
     69      }
     70 } S;
     71 
     72 void init(){
     73      int x, y;
     74      for (int i = 0; i < n; ++i){
     75            scanf("%d%d", &x, &y);
     76            X[i] = x;
     77            Y[i] = y;
     78      }
     79      n *= 2; 
     80      for (int i = 1; i <= m; ++i)
     81           scanf("%d%d", &a[i], &b[i]);
     82 }
     83 
     84 bool check(int floor){
     85      S.init(n);
     86      for (int i = 0; i < n / 2; ++i){
     87            S.add_clause(X[i], 0, Y[i], 0); 
     88          //  S.add_clause(Y[i], 1, X[i], 1);
     89      }
     90      for (int i = 1; i <= floor; ++i){
     91            S.add_clause(a[i], 1, b[i], 1); 
     92           // S.add_clause(b[i], 0, a[i], 0);  
     93      }    
     94      return S.solve();
     95 }
     96 
     97 void solve(){
     98      int l = 1, r = m, ans = 0, mid;
     99      while (l <= r){
    100           mid = (l + r) >> 1;
    101           if (check(mid)){ans = mid; l = mid + 1; }
    102           else r =  mid - 1;
    103      }
    104      printf("%d
    ", ans);
    105 }
    106 
    107 int main(){
    108    // freopen("a.in", "r", stdin);
    109   //  freopen("a.out", "w", stdout);
    110     while (scanf("%d%d", &n, &m) == 2 && n){
    111          init();
    112          solve();
    113     }
    114     fclose(stdin);  fclose(stdout);
    115     return 0;
    116 }
    View Code

    Poj2749

    题意:

           N 个牛栏,现在通过一条通道(s1,s2)把他们连起来,他们之间有一些约束关系,一些牛栏不能连在同一个点,一些牛栏必须连在同一个点,现在问有没有可能把他们都连好,而且满足所有的约束关系,如果可以,输出两个牛栏之间距离最大值的最小情况。

    思路:

          同样的二分答案。

          至于建图:假定对于某个点a,连S1,为事件a,连S2,为事件~a

                        那么,对于不能连在一起的a, b两点,显然a与b,~a与~b互斥

                        另外一种情况则反过来。。

                        还有对于任意a与b,枚举他们的连接情况,一有矛盾同样建边。具体看代码吧

        code:

       

      1 /*
      2  * Author:  Yzcstc
      3  * Created Time:  2014/3/12 14:56:50
      4  * File Name: Poj2749.cpp
      5  */
      6 #include<cstdio>
      7 #include<iostream>
      8 #include<cstring>
      9 #include<cstdlib>
     10 #include<cmath>
     11 #include<algorithm>
     12 #include<string>
     13 #include<map>
     14 #include<set>
     15 #include<vector>
     16 #include<queue>
     17 #include<stack>
     18 #include<ctime>
     19 #define M0(x) memset(x, 0, sizeof(x))
     20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
     21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
     22 #define PB push_back
     23 #define Inf 0x3fffffff
     24 #define eps 1e-8
     25 #define maxn 2000
     26 typedef long long LL;
     27 using namespace std;
     28 struct TwoSat{
     29        int n;
     30        bool mark[maxn];
     31        vector<int> G[maxn];
     32        int S[maxn], c;
     33        bool dfs(int x){
     34             if (mark[x^1]) return false;
     35             if (mark[x]) return true;
     36             mark[x] = true;
     37             S[c++] = x;
     38             for (int i = 0; i < G[x].size(); ++i)
     39                  if (!dfs(G[x][i])) return false;
     40             return true;
     41        }
     42 
     43        void init(int n){
     44             this->n = n;
     45             for (int i = 0; i < 2 * n; ++i) G[i].clear();
     46             memset(mark, 0, sizeof(mark));
     47        }
     48 
     49        void add_clause(int x, int xv, int y, int yv){
     50             x = x * 2 + xv;
     51             y = y * 2 + yv;
     52             G[x].push_back(y^1);
     53             G[y].push_back(x^1);
     54        }
     55 
     56        bool solve(){
     57             for (int i = 0; i < n * 2; i += 2)
     58                 if (!mark[i] && !mark[i+1]){
     59                       c = 0;
     60                       if (!dfs(i)){
     61                            while (c > 0) mark[S[--c]] = false;
     62                            if (!dfs(i+1)) return false;
     63                       }
     64                 }
     65             return true;
     66        }
     67 } S;
     68 int X[1200], Y[1200], F[1200][2], H[1200][2], n, A, B, d[1000][2], dst;
     69 int Sx1, Sx2, Sy1, Sy2;
     70 
     71 void init(){
     72      scanf("%d%d%d%d", &Sx1, &Sy1, &Sx2, &Sy2);
     73      for (int i = 0; i < n; ++i)
     74          scanf("%d%d", &X[i], &Y[i]);
     75      for (int i = 0; i < A; ++i)
     76          scanf("%d%d", &H[i][0], &H[i][1]), --H[i][0], --H[i][1];
     77      for (int i = 0; i < B; ++i)
     78          scanf("%d%d", &F[i][0], &F[i][1]), --F[i][0], --F[i][1];
     79 }
     80 
     81 int dist(int x1, int y1, int x2, int y2){
     82     return abs(x1 - x2) + abs(y1 - y2);
     83 }
     84 
     85 void get_dist(){
     86      dst = dist(Sx1, Sy1, Sx2, Sy2);
     87      for (int i = 0; i < n; ++i){
     88          d[i][0] = dist(X[i], Y[i], Sx1, Sy1);
     89          d[i][1] = dist(X[i], Y[i], Sx2, Sy2);
     90      }
     91 }
     92 
     93 bool check(int limit){
     94      S.init(n);
     95      for (int i = 0; i < A; ++i){
     96            S.add_clause(H[i][0], 0, H[i][1], 0);
     97            S.add_clause(H[i][0], 1, H[i][1], 1);
     98      }
     99      for (int i = 0; i < B; ++i){
    100            S.add_clause(F[i][0], 0, F[i][1], 1);
    101            S.add_clause(F[i][0], 1, F[i][1], 0);
    102      }
    103      int flag = 0;
    104      for (int i = 0; i < n; ++i)
    105          for (int j = i+1; j < n; ++j){
    106               flag = 0;
    107               if (d[i][0] + d[j][0] > limit) { S.add_clause(i, 0, j, 0); flag++; }
    108               if (d[i][0] + d[j][1] + dst > limit) { S.add_clause(i, 0, j, 1); flag++; }
    109               if (d[i][1] + d[j][0] + dst > limit) { S.add_clause(i, 1, j, 0); flag++; }
    110               if (d[i][1] + d[j][1] > limit) { S.add_clause(i, 1, j, 1); flag++; }
    111               if (flag == 4) return false;
    112          }
    113      return S.solve();
    114 }
    115 
    116 void solve(){
    117      get_dist();
    118      int ans = -1;
    119      int l = 0, r = 4000000, mid;
    120      while (l <= r){
    121           mid = (l + r) >> 1;
    122           if (check(mid)){ans = mid; r = mid - 1; }
    123           else l = mid + 1;
    124      }
    125      cout << ans << endl;
    126 }
    127 
    128 int main(){
    129   //  freopen("a.in", "r", stdin);
    130    // freopen("a.out", "w", stdout);
    131     while (scanf("%d%d%d", &n, &A, &B) == 3){
    132           init();
    133           solve();
    134     }
    135     fclose(stdin);  fclose(stdout);
    136     return 0;
    137 }
    View Code

    Poj3207:

    题意:

           一个圆上有n个点,依次从0到n-1,现在给出m条线段,每条连接两个点,线段可以在圆内也可以在圆外,问能否使得所有线段都不相交。

    思路:

         简单2-sat。对于两条相交的线段建边。。

      code:

       

     1 /*
     2  * Author:  Yzcstc
     3  * Created Time:  2014/3/12 19:09:31
     4  * File Name: poj3207.cpp
     5  */
     6 #include<cstdio>
     7 #include<iostream>
     8 #include<cstring>
     9 #include<cstdlib>
    10 #include<cmath>
    11 #include<algorithm>
    12 #include<string>
    13 #include<map>
    14 #include<set>
    15 #include<vector>
    16 #include<queue>
    17 #include<stack>
    18 #include<ctime>
    19 #define M0(x) memset(x, 0, sizeof(x))
    20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
    21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
    22 #define PB push_back
    23 #define Inf 0x3fffffff
    24 #define eps 1e-8
    25 #define maxn 2014
    26 typedef long long LL;
    27 using namespace std;
    28 struct TwoSat{
    29        int n;
    30        int S[maxn], c;
    31        bool mark[maxn];
    32        vector<int> G[maxn];
    33        bool dfs(int x){
    34              if (mark[x^1]) return false;
    35              if (mark[x]) return true;
    36              mark[x] = true;
    37              S[c++] = x;
    38              for (int i = 0; i < G[x].size(); ++i)
    39                  if (!dfs(G[x][i])) return false;
    40              return true;
    41        }
    42 
    43        void init(int n){
    44              this->n = n;
    45              for (int i = 0; i < n * 2; ++i) G[i].clear();
    46              memset(mark, 0, sizeof(mark));
    47        }
    48 
    49        void add_clause(int x, int y){
    50             G[x].push_back(y^1);
    51             G[y].push_back(x^1);
    52        }
    53        bool solve(){
    54            for (int i = 0; i < n * 2; i += 2)
    55            if (!mark[i] && !mark[i+1]){
    56                   c = 0;
    57                   if (!dfs(i)){
    58                        while (c > 0) mark[S[--c]] = false;
    59                        if (!dfs(i+1)) return false;
    60                   }
    61            }
    62            return true;
    63        }
    64 } S;
    65 int m, n, X[2014], Y[2014];
    66 
    67 bool In(int a, int b, int c){
    68      if (a < b && a < c && c < b) return true;
    69      if (a > b && (c > a || c < b)) return true;
    70      return false;
    71 }
    72 void solve(){
    73      for (int i = 0; i < n; ++i)
    74         scanf("%d%d", &X[i], &Y[i]);
    75      S.init(n);
    76      for (int i = 0; i < n; ++i)
    77         for (int j = i+1; j < n; ++j)
    78              if (In(X[i], Y[i], X[j]) && In(Y[i], X[i], Y[j])
    79                  || In(X[i], Y[i], Y[j]) && In(Y[i], X[i], X[j])){
    80                      S.add_clause(i*2, j*2);
    81                      S.add_clause(i*2+1, j*2+1);
    82                  }
    83      bool ans = S.solve();
    84      if (ans) puts("panda is telling the truth...");
    85      else puts("the evil panda is lying again");
    86 }
    87 
    88 int main(){
    89    // freopen("a.in", "r", stdin);
    90   //  freopen("a.out", "w", stdout);
    91     while (scanf("%d%d", &m, &n) == 2)  solve();
    92     fclose(stdin);  fclose(stdout);
    93     return 0;
    94 }
    View Code

    Poj3648:

      题意:

             有一对新人结婚,邀请n对夫妇去参加婚礼。有一张很长的桌子,人只能坐在桌子的两边,还要满足下面的要求:1.每对夫妇不能坐在同一侧 2.n对夫妇之中可能有通奸关系(包括男男,男女,女女),有通奸关系的不能同时坐在新娘的对面,可以分开坐,可以同时坐在新娘这一侧。如果存在一种可行的方案,输出与新娘同侧的人。

      思路:

           算是这几道题比较容易错的了 。

           对于x与y通奸,则建x->~y, y->~x的边

           而特殊的是新娘要与新郎连一条边,表示坐在对面

    code:

       

      1 /*
      2  * Author:  Yzcstc
      3  * Created Time:  2014/3/12 20:08:13
      4  * File Name: poj3468.cpp
      5  */
      6 #include<cstdio>
      7 #include<iostream>
      8 #include<cstring>
      9 #include<cstdlib>
     10 #include<cmath>
     11 #include<algorithm>
     12 #include<string>
     13 #include<map>
     14 #include<set>
     15 #include<vector>
     16 #include<queue>
     17 #include<stack>
     18 #include<ctime>
     19 #define M0(x) memset(x, 0, sizeof(x))
     20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
     21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
     22 #define PB push_back
     23 #define Inf 0x3fffffff
     24 #define eps 1e-8
     25 #define maxn 50014
     26 typedef long long LL;
     27 using namespace std;
     28 struct TwoSat{
     29        int n;
     30        int S[maxn], c;
     31        bool mark[maxn];
     32        vector<int> G[maxn];
     33        bool dfs(int x){
     34              if (mark[x^1]) return false;
     35              if (mark[x]) return true;
     36              mark[x] = true;
     37              S[c++] = x;
     38              for (int i = 0; i < (int)G[x].size(); ++i)
     39                  if (!dfs(G[x][i])) return false;
     40              return true;
     41        }
     42 
     43        void init(int n){
     44              this->n = n;
     45              for (int i = 0; i < n * 2; ++i) G[i].clear();
     46              memset(mark, 0, sizeof(mark));
     47        }
     48 
     49        void add_clause(int x, int y){
     50             G[x^1].push_back(y);
     51             G[y^1].push_back(x);
     52        }
     53        bool solve(){
     54            for (int i = 0; i < n * 2; i += 2)
     55            if (!mark[i] && !mark[i+1]){
     56                   c = 0;
     57                   if (!dfs(i)){
     58                        while (c > 0) mark[S[--c]] = false;
     59                        if (!dfs(i+1)) return false;
     60                   }
     61            }
     62            return true;
     63        }
     64 } S;
     65 int n, m;
     66 
     67 void solve(){
     68      int x, y;
     69      char c1, c2;
     70      S.init(n);
     71      for (int i = 0; i < m; ++i){
     72           scanf("%d%c%d%c", &x, &c1, &y, &c2);
     73           x = x * 2;
     74           y = y * 2;
     75           if (c1 == 'h') ++x;
     76           if (c2 == 'h') ++y;
     77           S.add_clause(x, y);
     78      }
     79      S.G[1].push_back(0);
     80      if (!S.solve()){
     81             puts("bad luck");
     82             return;
     83      }
     84      for (int i = 1; i < n; ++i){
     85            if (S.mark[2*i]) printf("%dw", i);
     86            else printf("%dh", i);
     87            if (i == n-1) puts("");
     88            printf(" ");
     89      }
     90 }
     91 
     92 int main(){
     93    // freopen("a.in", "r", stdin);
     94   //  freopen("a.out", "w", stdout);
     95     while (scanf("%d%d", &n, &m) == 2 && n){
     96         // init();
     97          solve();
     98     }
     99     fclose(stdin);  fclose(stdout);
    100     return 0;
    101 }
    View Code

    poj3678:

    题意:

         有一个有向图G(V,E),每条边e(a,b)上有一个位运算符op(AND, OR或XOR)和一个值c(0或1)。

        问能不能在这个图上的每个点分配一个值X(0或1),使得每一条边e(a,b)满足  Xa op Xb =  c

    思路:

               a and b ==1 , !a->a , !b -> b

            a and b ==0 , a->!b , b->!a

            a or b ==1   ,  !a->b , !b->a

            a or b ==0   ,  a->!a , b->!b

            a xor b ==1 , a->!b,!b->a,!a->b,b->!a

            a xor b ==0 , a->b,b->a,!a->!b,!b->!a

           至于为什对于a && b == 1 要建立本身到本身反的边,是要推出矛盾。。

    code:

         

      1 /*
      2  * Author:  Yzcstc
      3  * Created Time:  2014/3/16 21:06:08
      4  * File Name: poj3678.cpp
      5  */
      6 #include<cstdio>
      7 #include<iostream>
      8 #include<cstring>
      9 #include<cstdlib>
     10 #include<cmath>
     11 #include<algorithm>
     12 #include<string>
     13 #include<map>
     14 #include<set>
     15 #include<vector>
     16 #include<queue>
     17 #include<stack>
     18 #include<ctime>
     19 #define M0(x) memset(x, 0, sizeof(x))
     20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
     21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
     22 #define PB push_back
     23 #define Inf 0x3fffffff
     24 #define eps 1e-8
     25 #define maxn 4200
     26 typedef long long LL;
     27 using namespace std;
     28 struct TwoSat{
     29        int n;
     30        vector<int> G[maxn];
     31        bool mark[maxn];
     32        int c, S[maxn];
     33        bool dfs(int x){
     34              if (mark[x^1]) return false;
     35              if (mark[x]) return true;
     36              mark[x] = true;
     37              S[c++] = x;
     38              for (int i = 0; i < G[x].size(); ++i)
     39                    if (!dfs(G[x][i])) return false;
     40              return true;
     41        }
     42 
     43        void init(int n){
     44              this->n = n;
     45              memset(mark, 0, sizeof(mark));
     46              for (int i = 0; i < 2*n; ++i)
     47                   G[i].clear();
     48        }
     49 
     50        void add_clause(int x, int y){ G[x].push_back(y); }
     51 
     52        bool solve(){
     53              for (int i = 0; i < 2*n; i += 2)
     54                 if (!mark[i] && !mark[i+1]){
     55                      c = 0;
     56                      if (!dfs(i)){
     57                            while (c > 0) mark[S[--c]] = false;
     58                            if (!dfs(i+1)) return false;
     59                      }
     60                 }
     61              return true;
     62        }
     63 
     64 } S;
     65 int n, m;
     66 
     67 void solve(){
     68      char s[10];
     69      int a, b, c;
     70      S.init(n);
     71      for (int i = 0; i < m; ++i){
     72             scanf("%d%d%d%s", &a, &b, &c, &s);
     73             if (s[0] == 'A'){
     74                 if (c == 1) {  S.add_clause(a * 2, a * 2 + 1); S.add_clause(b * 2, b * 2 + 1); }
     75                 if (c == 0) {  S.add_clause(b * 2 + 1, a * 2); S.add_clause(a * 2 + 1, b * 2); }
     76             }
     77             if (s[0] == 'O'){
     78                 if (c == 1) {  S.add_clause(b * 2, a * 2 + 1); S.add_clause(a * 2, b * 2 + 1); }
     79                 if (c == 0) {  S.add_clause(a * 2 + 1, a * 2); S.add_clause(b * 2 + 1, b * 2); }
     80             }
     81             if (s[0] == 'X'){
     82                  if (c == 1) {  S.add_clause(b * 2, a * 2 + 1); S.add_clause(a * 2, b * 2 + 1);
     83                                 S.add_clause(b * 2 + 1, a * 2); S.add_clause(a * 2 + 1, b * 2);
     84                              }
     85                  if (c == 0) {  S.add_clause(b * 2, a * 2); S.add_clause(a * 2, b * 2);
     86                                 S.add_clause(b * 2 + 1, a * 2 + 1); S.add_clause(a * 2 + 1, b * 2 + 1);
     87                              }
     88             }
     89      }
     90      if (S.solve()) puts("YES");
     91      else puts("NO");
     92 }
     93 
     94 int main(){
     95    // freopen("a.in", "r", stdin);
     96    // freopen("a.out", "w", stdout);
     97     while (scanf("%d%d", &n, &m) == 2) solve();
     98     fclose(stdin);  fclose(stdout);
     99     return 0;
    100 }
    View Code

    Poj3683:

    题意:

       有一个牧师要给好几对新婚夫妇准备婚礼.,已知每对新婚夫妇的有空的时间以及婚礼持续时间..

       问是否可以让每对新婚夫妇都得到该牧师的祝福。如果可以就输出YES以及可行解 不可以就输出NO

    思路:

        典型的2-sat。只不过多了输出解。

    code:

      1 /*
      2  * Author:  Yzcstc
      3  * Created Time:  2014/3/18 18:06:09
      4  * File Name: poj3683.cpp
      5  */
      6 #include<cstdio>
      7 #include<iostream>
      8 #include<cstring>
      9 #include<cstdlib>
     10 #include<cmath>
     11 #include<algorithm>
     12 #include<string>
     13 #include<map>
     14 #include<set>
     15 #include<vector>
     16 #include<queue>
     17 #include<stack>
     18 #include<ctime>
     19 #define M0(x) memset(x, 0, sizeof(x))
     20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
     21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
     22 #define PB push_back
     23 #define Inf 0x3fffffff
     24 #define maxn 8000
     25 #define eps 1e-8
     26 typedef long long LL;
     27 using namespace std;
     28 struct TwoSat{
     29        int n;
     30        vector<int> G[maxn];
     31        int c, S[maxn];
     32        bool mark[maxn];
     33        bool dfs(int x){
     34              if (mark[x^1]) return false;
     35              if (mark[x]) return true;
     36              mark[x] = true;
     37              S[c++] = x;
     38              for (int i = 0; i < G[x].size(); ++i)
     39                   if (!dfs(G[x][i])) return false;
     40              return true;
     41        }
     42 
     43        void init(int n){
     44              this->n = n;
     45              memset(mark, 0, sizeof(mark));
     46              for (int i = 0; i < 2*n; ++i)
     47                   G[i].clear();
     48        }
     49        void add_clause(int x, int y){
     50              G[x^1].push_back(y);
     51              G[y^1].push_back(x);
     52        }
     53        bool solve(){
     54              for (int i = 0; i < 2*n; i += 2)
     55                 if (!mark[i] && !mark[i+1]){
     56                        c = 0;
     57                        if (!dfs(i)){
     58                              while (c > 0) mark[S[--c]] = false;
     59                              if (!dfs(i+1)) return false;
     60                        }
     61                 }
     62              return true;
     63        }
     64 } S;
     65 int n;
     66 int St[2048], En[2048], D[2048];
     67 bool g[2048][2048];
     68 
     69 void init(){
     70      int x, y, x2, y2, z;
     71      for (int i = 0; i < n; ++i){
     72          scanf("%d:%d %d:%d %d", &x, &y, &x2, &y2, &z);
     73          D[i] = z;
     74          St[i] = x * 60 + y;
     75          En[i] = x2 * 60 + y2;
     76      }
     77 }
     78 
     79 bool check(int S1, int T1, int S2, int T2){
     80      if (S1 < T2 && S2 < T1) return true;
     81      return false;
     82 }
     83 
     84 void solve(){
     85      S.init(n);
     86      int S1, T1, S2, T2;
     87      M0(g);
     88      for (int i = 0; i < n; ++i)
     89        for (int j = i + 1; j < n; ++j){
     90              S1 = St[i],  T1 = St[i] + D[i];
     91              S2 = St[j],  T2 = St[j] + D[j];
     92              if (check(S1, T1, S2, T2)){ g[i*2][j * 2] = true; S.add_clause(i * 2, j * 2); }
     93              S1 = St[i],  T1 = St[i] + D[i];
     94              S2 = En[j] - D[j],  T2 = En[j];
     95              if (check(S1, T1, S2, T2)) { g[i*2][j*2+1] = true; S.add_clause(i * 2, j * 2 + 1);}
     96              S1 = En[i] - D[i],  T1 = En[i];
     97              S2 = St[j],  T2 = St[j] + D[j];
     98              if (check(S1, T1, S2, T2)) { g[i*2+1][j*2] = true; S.add_clause(i * 2 + 1, j * 2);}
     99              S1 = En[i] - D[i],  T1 = En[i];
    100              S2 = En[j] - D[j],  T2 = En[j];
    101              if (check(S1, T1, S2, T2)) { g[i*2+1][j*2+1] = true; S.add_clause(i * 2 + 1, j * 2 + 1);}
    102        }
    103      if (!S.solve()){puts("NO"); return;}
    104      puts("YES");
    105      vector<int> V;
    106      for (int i = 0; i < n; ++i)
    107         if (S.mark[i*2]) V.PB(i*2);
    108         else V.PB(i*2+1);
    109      bool flag = true;
    110      for (int i = 0; i < V.size(); ++i)
    111          for (int j = i+1; j < V.size(); ++j)
    112             if (g[V[i]][V[j]] || g[V[j]][V[i]]) flag = false;
    113      for (int i = 0; i < n; ++i){
    114          if (S.mark[i*2] == flag){
    115                printf("%02d:%02d %02d:%02d
    ", St[i] / 60, St[i] % 60, (St[i] + D[i]) / 60, (St[i] + D[i]) % 60);
    116                continue;
    117          }
    118          printf("%02d:%02d %02d:%02d
    ", (En[i] - D[i]) / 60, (En[i] - D[i]) % 60, En[i] / 60, En[i] % 60);
    119      }
    120 }
    121 
    122 int main(){
    123    // freopen("a.in", "r", stdin);
    124   //  freopen("a.out", "w", stdout);
    125     while (scanf("%d", &n) != EOF){
    126          init();
    127          solve();
    128     }
    129     fclose(stdin);  fclose(stdout);
    130     return 0;
    131 }
    View Code

    Poj3905

    题意:

        有n个候选人,m组要求,每组要求关系到候选人中的两个人,“+i +j”代表i和j中至少有一人被选中,“-i -j”代表i和j中至少有一人不被选中。“+i -j”代表i被选中和j不被选中这两个事件至少发生一个,“-i +j”代表i不被选中和j被选中这两个事件至少发生一个。问是否存在符合所有m项要求的方案存在。

     思路:

        简单的2-sat

    code:

     1 /*
     2  * Author:  Yzcstc
     3  * Created Time:  2014/3/19 0:06:34
     4  * File Name: poj3905.cpp
     5  */
     6 #include<cstdio>
     7 #include<iostream>
     8 #include<cstring>
     9 #include<cstdlib>
    10 #include<cmath>
    11 #include<algorithm>
    12 #include<string>
    13 #include<map>
    14 #include<set>
    15 #include<vector>
    16 #include<queue>
    17 #include<stack>
    18 #include<ctime>
    19 #define M0(x) memset(x, 0, sizeof(x))
    20 #define rep(i, a, b) for (int i = (a); i <= (b); ++i)
    21 #define red(i, a, b) for (int i = (a); i >= (b); --i)
    22 #define PB push_back
    23 #define Inf 0x3fffffff
    24 #define eps 1e-8
    25 #define maxn 4000
    26 typedef long long LL;
    27 using namespace std;
    28 struct Twosat{
    29        int n;
    30        int S[maxn], c;
    31        vector<int> G[maxn];
    32        bool mark[maxn];
    33        bool dfs(int x){
    34             if (mark[x^1]) return false;
    35             if (mark[x]) return  true;
    36             mark[x] = true;
    37             S[c++] = x;
    38             for (int i = 0; i < G[x].size(); ++i)
    39                 if (!dfs(G[x][i])) return false;
    40             return true;
    41        }
    42        void init(int n){
    43             this->n = n;
    44             memset(mark, 0, sizeof(mark));
    45             for (int i = 0; i < 2 * n; ++i)
    46                  G[i].clear();
    47        }
    48        void add_clause(int x, int y){
    49             G[x^1].PB(y);
    50             G[y^1].PB(x);
    51        }
    52        bool solve(){
    53              for (int i = 0; i < 2*n; i += 2)
    54                   if (!mark[i] && !mark[i+1]){
    55                         c = 0;
    56                         if (!dfs(i)){
    57                               while (c > 0) mark[S[--c]] = false;
    58                               if (!dfs(i+1)) return false;
    59                         }
    60                   }
    61              return true;
    62        }
    63 } S;
    64 int n, m;
    65 
    66 int change(char s[], int n){
    67      int ret = 0;
    68      for (int i = 0; i < n; ++i)
    69          if(s[i] <= '9' && s[i] >= '0') ret = ret * 10 + s[i] - 48;
    70      return ret;
    71 }
    72 
    73 void solve(){
    74      int x, y;
    75      char s[20], s1[20];
    76      S.init(n);
    77      for (int i = 0; i < m; ++i){
    78            scanf("%s%s", &s, &s1);
    79            x = change(s, strlen(s)) - 1;
    80            y = change(s1, strlen(s1)) - 1;
    81            if (s[0] == '+' && s1[0] == '+') S.add_clause(x * 2 + 1, y * 2 + 1);
    82            if (s[0] == '+' && s1[0] == '-') S.add_clause(x * 2 + 1, y * 2);
    83            if (s[0] == '-' && s1[0] == '+') S.add_clause(x * 2, y * 2 + 1);
    84            if (s[0] == '-' && s1[0] == '-') S.add_clause(x * 2, y * 2);
    85      }
    86      if (S.solve()) puts("1");
    87      else puts("0");
    88 }
    89 
    90 int main(){
    91   //  freopen("a.in", "r", stdin);
    92   //  freopen("a.out", "w", stdout);
    93     while (scanf("%d%d", &n, &m) == 2) solve();
    94     fclose(stdin);  fclose(stdout);
    95     return 0;
    96 }
    View Code
  • 相关阅读:
    Python批量修改文件后缀脚本
    IOS开发(62)之GCD上异步执行非UI任务
    创业遐想:三千世界 致在桥上看风景的你
    院长谈读书的方法(部门图书互换活动)
    树形dp hdu4514 湫湫系列故事——设计风景线
    设计模式之strategy模式(C++实现)
    拿什么拯救你,我的大规模杀伤性武器Nokia!
    C++成员函数的重载,继承,覆盖和隐藏
    ORA00600: internal error code, arguments: [4194] ,ORA00607
    wing ide 4.0/4.1超简单破解方法
  • 原文地址:https://www.cnblogs.com/yzcstc/p/3610444.html
Copyright © 2020-2023  润新知