LibLinear(SVM包)使用说明之(三)实践
我们在UFLDL的教程中,Exercise: Convolution and Pooling这一章节,已经得到了cnnPooledFeatures.mat特征。在该练习中,我们使用的是softmax分类器来分类的。在这里我们修改为用SVM来替代softmax分类器。SVM由Liblinear软件包来提供。这里是四分类问题,所以Liblinear会根据我们传入的训练样本训练四个二分类器,以实现四分类。以前由softmax分类器得到的准确率是80.406%。在这里换成Liblinear后,准确率变为80.75%。在这里差别不是很大。
在本文的例子中,我们增加了scale和Cross Validation,Cross Validation是用来选择一个最好的参数C的(不知道自己这两个步骤有没有正确,如有错误,还望大家提醒,谢谢)。
具体的代码如下:
- %// Classification by LibLinear
- %// LibLinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/
- %// Author : zouxy
- %// Date : 2013-9-2
- %// HomePage : http://blog.csdn.net/zouxy09
- %// Email : zouxy09@qq.com
- clear; clc;
- %%% step1: load data
- fprintf(1,'step1: Load data... ');
- % pooledFeaturesTrain大小为400*2000*3*3
- % pooledFeaturesTest大小为400*3200*3*3
- % 第一维是特征个数,也就是特征图个数,第二维是样本个数,第三维是特征图的宽,
- % 第四维是特征图的高
- load cnnPooledFeatures.mat;
- load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
- load stlTestSubset.mat % loads numTestImages, testImages, testLabels
- % B = permute(A,order) 按照向量order指定的顺序重排A的各维
- train_X = permute(pooledFeaturesTrain, [1 3 4 2]);
- % 将每个样本的特征拉成一个列向量,每个样本一个列,矩阵大小为3600*2000
- train_X = reshape(train_X, numel(pooledFeaturesTrain) / numTrainImages, numTrainImages);
- train_Y = trainLabels; % 2000*1
- test_X = permute(pooledFeaturesTest, [1 3 4 2]);
- test_X = reshape(test_X, numel(pooledFeaturesTest) / numTestImages, numTestImages);
- test_Y = testLabels;
- % release some memory
- clear trainImages testImages pooledFeaturesTrain pooledFeaturesTest;
- %%% step2: scale the data
- fprintf(1,'step2: Scale data... ');
- % Using the same scaling factors for training and testing sets,
- % we obtain much better accuracy. Note: scale each attribute(feature), not sample
- % scale to [0 1]
- % when a is a vector, b = (a - min(a)) .* (upper - lower) ./ (max(a)-min(a)) + lower
- lower = 0;
- upper = 1.0;
- train_X = train_X';
- X_max = max(train_X);
- X_min = min(train_X);
- train_X = (train_X - repmat(X_min, size(train_X, 1), 1)) .* (upper - lower) ...
- ./ repmat((X_max - X_min), size(train_X, 1), 1) + lower;
- test_X = test_X';
- test_X = (test_X - repmat(X_min, size(test_X, 1), 1)) .* (upper - lower) ...
- ./ repmat((X_max - X_min), size(test_X, 1), 1) + lower;
- % Note: before scale the accuracy is 80.4688%, after scale it turns to 80.1875%,
- % and took more time. So is that my scale operation wrong or other reasons?
- % After adding bias, Accuracy = 80.75% (2584/3200)
- %%% step3: Cross Validation for choosing parameter
- fprintf(1,'step3: Cross Validation for choosing parameter c... ');
- % the larger c is, more time should be costed
- c = [2^-6 2^-5 2^-4 2^-3 2^-2 2^-1 2^0 2^1 2^2 2^3];
- max_acc = 0;
- tic;
- for i = 1 : size(c, 2)
- option = ['-B 1 -c ' num2str(c(i)) ' -v 5 -q'];
- fprintf(1,'Stage: %d/%d: c = %d, ', i, size(c, 2), c(i));
- accuracy = train(train_Y, sparse(train_X), option);
- if accuracy > max_acc
- max_acc = accuracy;
- best_c = i;
- end
- end
- fprintf(1,'The best c is c = %d. ', c(best_c));
- toc;
- %%% step4: train the model
- fprintf(1,'step4: Training... ');
- tic;
- option = ['-c ' num2str(c(best_c)) ' -B 1 -e 0.001'];
- model = train(train_Y, sparse(train_X), option);
- toc;
- %%% step5: test the model
- fprintf(1,'step5: Testing... ');
- tic;
- [predict_label, accuracy, dec_values] = predict(test_Y, sparse(test_X), model);
- toc;