• noip 2013 提高组 day1


    1.转圈游戏:

       解析部分略,快速幂就可以过

    Code:

     1 #include<iostream>
     2 #include<fstream>
     3 using namespace std;
     4 ifstream fin("circle.in");
     5 ofstream fout("circle.out");
     6 long long k;
     7 long long n;
     8 long long result;
     9 long long x;
    10 long long m;
    11 long long _pow(int a, int pos){
    12     if(pos == 1) return a%n;
    13     long long temp = _pow(a,pos/2);
    14     if(pos % 2 == 1) return ( temp * temp*a)%n;
    15     return ( temp * temp )%n;
    16 }
    17 int main(){
    18     fin>>n>>m>>k>>x;
    19     fout<<(x+m*_pow(10, k))%n;
    20     return 0;
    21 }
    转圈游戏

    2.火柴排队
      假设现在有两队火柴 a和b

      a: 1 3 4 2

      b: 1 2 3 5

      因为它们的差的总值是一定的(化简一下,开开括号就得到了),为了使它们的差的平方的和最小,

    所以a数列的第k小应该和b数列的第k小并在一起求差再求平方。

      无论把a排成b,还是把b排成a都差不多,那就随便选一个,

      下面又有一个问题,求什么的逆序对

      将b中的元素应该在的位数写下来 1 4 2 3

      如果将它排成1 2 3 4(带着原来的数一起排,绑定在一起)就意味着b数组被“排”成a数组了

    所以应该是求它的逆序对(交换次数)

      另外,注意,变算边取模

    Code:

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #define _next(a) ((a)&(-a))
     6 using namespace std;
     7 typedef class IndexedTree{
     8     public:
     9         int *list;
    10         int size;
    11         IndexedTree():list(NULL),size(size){}
    12         IndexedTree(int size):size(size){
    13             list = new int[(const int)(size + 1)];
    14             memset(list, 0, sizeof(int) * (size + 1));
    15         }
    16         void add(int index, int value){
    17             while(index <= size){
    18                 list[index] += value;
    19                 index += (_next(index));
    20             }
    21         }
    22         long long getSum(int index){
    23             long long result = 0;
    24             while(index > 0){
    25                 result += list[index];
    26                 result %= 99999997;
    27                 index -= (_next(index));
    28             }
    29             return result;
    30         }
    31 }IndexedTree;
    32 FILE *fin = fopen("match.in","r");
    33 FILE *fout= fopen("match.out","w");
    34 IndexedTree MyTree;
    35 typedef struct mdata{
    36     int index;
    37     int height;
    38 }mdata;
    39 mdata *a;
    40 mdata *b;
    41 mdata *c;
    42 int n;
    43 long long result = 0;
    44 typedef bool boolean;
    45 boolean cmpare(const mdata &a, const mdata &b){
    46     return a.height < b.height;
    47 }
    48 int main(){
    49     fscanf(fin,"%d",&n);
    50     a = new mdata[(const int)(n + 1)];
    51     c = new mdata[(const int)(n + 1)];
    52     b = new mdata[(const int)(n + 1)];
    53     MyTree = IndexedTree(n);
    54     for(int i = 1;i <= n;i++){
    55         fscanf(fin,"%d",&a[i].height);
    56         a[i].index = i;
    57     }
    58     sort(a + 1, a + n + 1, cmpare);
    59     for(int i = 1;i <= n;i++){
    60         fscanf(fin,"%d",&b[i].height);
    61         b[i].index = i;
    62         c[i] = b[i];
    63     }
    64     sort(b + 1, b + n + 1, cmpare);
    65     for(int i = 1;i <= n;i++){
    66         c[b[i].index].index = a[i].index;
    67     }
    68     for(int i = 1;i <= n;i++){
    69         MyTree.add(c[i].index, 1);
    70         result += i - MyTree.getSum(c[i].index);
    71         result %= 99999997;
    72     }
    73     fprintf(fout,"%ld",result);
    74     return 0;
    75 }
    火柴排队

    3.货车运输

    60分程序:

      思路就是先最大生成树,把无用的边都去掉,接着spfa

      1 #include<iostream>
      2 #include<queue>
      3 #include<cstdio>
      4 #include<cstring>
      5 #include<algorithm>
      6 #define _min(a,b) ((a) < (b))?(a):(b)
      7 using namespace std;
      8 int n,m,k;
      9 FILE *fin = fopen("truck.in","r");
     10 FILE *fout= fopen("truck.out","w");
     11 typedef class Edge{
     12     public:
     13         int next;
     14         int end;
     15         int z;
     16         Edge():next(0),end(0),z(0){}
     17         Edge(int next, int end, int z):next(next),end(end),z(z){}
     18 }Edge;
     19 int *h;
     20 int *h1;
     21 Edge *edge1;
     22 int _now = 0;
     23 typedef struct gdata{
     24     int from;
     25     int end;
     26 }gdata;
     27 typedef bool boolean;
     28 gdata g;
     29 int buffer[3];
     30 void add(int from, int end, int v){
     31     edge1[++_now] = Edge(h[from], end, v);
     32     h[from] = _now;
     33 }
     34 typedef struct Edge1{
     35     int from;
     36     int end;
     37     int v;
     38 }Edge1; 
     39 int *fset;    //并查集
     40 int _find(int found){
     41     if(fset[found] != found) return ( fset[found] = _find(fset[found]) ); 
     42     return fset[found];
     43 }
     44 void unit(int &a, int &b){
     45     int af = _find(a);
     46     int bf = _find(b);
     47     fset[bf] = af;
     48 }
     49 queue<int> que;
     50 boolean *visited;
     51 int *f;
     52 Edge1 *edge;
     53 int solve(){
     54     memset(visited, false, sizeof(boolean) * (n + 1));
     55     memset(f,-1, sizeof(int) * (n + 1));
     56     if(h[g.end] == 0||h[g.from] == 0) return -1;
     57     f[g.from] = 1000000;
     58     visited[g.from] = true;
     59     que.push(g.from);
     60     while(!que.empty()){
     61         int u = que.front();
     62         que.pop();
     63         visited[u] = false;
     64         for(int i = h[u];i != 0;i = edge1[i].next){
     65             int eu = edge1[i].end;
     66             if(f[eu] < (_min(f[u] ,edge1[i].z))){
     67                 f[eu] = (_min(f[u] ,edge1[i].z));
     68                 if(!visited[eu]){
     69                     visited[eu] = true;
     70                     que.push(eu);
     71                 }
     72             }
     73         }
     74     }
     75     if(f[g.end] < 0) return -1;
     76     return f[g.end];
     77 }
     78 boolean cmpare(const Edge1& a, const Edge1& b){
     79     return a.v > b.v;
     80 }
     81 void init_myTree(){
     82     fset = new int[(const int)(n + 1)];
     83     sort(edge+1, edge + m * 2 + 1, cmpare);
     84     for(int i = 1;i <= n; i++) fset[i] = i;
     85     int _count = 0;
     86     for(int i = 1;i <= m;i++){
     87         if(_count == n - 1) break;
     88         if(_find(edge[i].from) != _find(edge[i].end)){
     89             add(edge[i].from, edge[i].end, edge[i].v);
     90             add(edge[i].end, edge[i].from, edge[i].v);
     91             unit(edge[i].from, edge[i].end);
     92             _count++;
     93         }
     94     }
     95     delete[] edge;
     96     delete[] fset;
     97 }
     98 int main(){
     99     fscanf(fin,"%d%d",&n,&m);
    100     h = new int[(const int)(n + 1)];
    101     edge = new Edge1[(const int)(m * 2 + 1)];
    102     memset(h, 0, sizeof(int) * (n + 1));
    103     visited = new boolean[(const int)(n + 1)];
    104     f = new int[(const int)(n + 1)];
    105     edge1 = new Edge[(const int)(n * 2 + 1)];
    106     for(int i = 1;i <= m;i++){
    107         fscanf(fin,"%d%d%d",&edge[i].from,&edge[i].end,&edge[i].v);
    108     }
    109     init_myTree();
    110     fscanf(fin,"%d",&k);
    111     for(int i = 1;i <= k;i++){
    112         fscanf(fin,"%d%d",&g.from,&g.end);
    113         fprintf(fout,"%d
    ",solve());
    114     }
    115     return 0;
    116 }
    骗分版

    100分程序:

      思路是这样的:

      1.用并查集,把无用的边都去掉,得到几棵树

      2.dfs进行初始化,注意不是只有一棵树

      3.构造倍增数组,用up[i][j]表示i的第2j 个父节点是多少,dis[i][j]表示i到up[i][j]的最大载重

      4.进行倍增找lca,得到答案

    Code(倍增)

      1 /**
      2  * codevs.cn    & vijos.org
      3  * Problem#3287      Problem#1843
      4  * Accepted          Accepted
      5  * Time:416ms      Time:385ms
      6  * Memory:2108k      Memory:2472k
      7  */
      8 #include<iostream>
      9 #include<cstdio>
     10 #include<fstream>
     11 #include<cstring>
     12 #include<queue>
     13 #include<cctype>
     14 #include<algorithm>
     15 using namespace std;
     16 typedef bool boolean;
     17 #define INF 0xfffffff
     18 #define smin(a, b) a = min(a, b)
     19 #define smax(a, b) a = max(a, b)
     20 template<typename T>
     21 inline void readInteger(T& u){
     22     char x;
     23     while(!isdigit((x = getchar())));
     24     for(u = x - '0'; isdigit((x = getchar())); u = (u << 1) + (u << 3) + x - '0');
     25     ungetc(x, stdin);
     26 }
     27 ///map template starts
     28 typedef class Edge{
     29     public:
     30         int end;
     31         int next;
     32         int w;
     33         Edge(const int end = 0, const int next = 0, const int w = 0):end(end), next(next), w(w){}
     34 }Edge;
     35 typedef class MapManager{
     36     public:
     37         int ce;
     38         int *h;
     39         Edge *edge;
     40         MapManager(){}
     41         MapManager(int limit, int points):ce(0){
     42             h = new int[(const int)(points + 1)];
     43             edge = new Edge[(const int)(limit + 1)];
     44             memset(h, 0, sizeof(int) * (points + 1));
     45         }
     46         inline void addEdge(int from, int end, int w){
     47             edge[++ce] = Edge(end, h[from], w);
     48             h[from] = ce;
     49         }
     50         inline void addDoubleEdge(int from, int end, int w){
     51             addEdge(from, end, w);
     52             addEdge(end, from, w);
     53         }
     54 }MapManager;
     55 ///map template ends
     56 typedef class union_found{
     57     public:
     58         int *f;
     59         union_found():f(NULL) {}
     60         union_found(int points) {
     61             f = new int[(const int)(points + 1)];
     62             for(int i = 0; i <= points; i++)
     63                 f[i] = i;
     64         }
     65         int find(int x) {
     66             if(f[x] != x)    return f[x] = find(f[x]);
     67             return f[x];
     68         }
     69         void unit(int fa, int so) {
     70             int ffa = find(fa);
     71             int fso = find(so);
     72             f[fso] = ffa;
     73         }
     74         boolean connected(int a, int b) {
     75             return find(a) == find(b);
     76         }
     77 }union_found;
     78 
     79 template<typename T>class Matrix{
     80     public:
     81         T *p;
     82         int lines;
     83         int rows;
     84         Matrix():p(NULL){    }
     85         Matrix(int lines, int rows):lines(lines), rows(rows){
     86             p = new T[(lines * rows)];
     87         }
     88         T* operator [](int pos){
     89             return (p + pos * lines);
     90         }
     91 };
     92 
     93 #define m_begin(g, i) (g).h[(i)]
     94 #define m_end(g, i)    (g).edge[(i)].end
     95 #define m_next(g, i) (g).edge[(i)].next
     96 #define m_w(g, i)    (g).edge[(i)].w
     97 
     98 typedef class _Edge{
     99     public:
    100         int from;
    101         int end;
    102         int w;
    103         _Edge():from(0), end(0), w(0){}
    104 }_Edge;
    105 
    106 int n;
    107 int m;
    108 _Edge* es;
    109 inline void init(){
    110     readInteger(n);
    111     readInteger(m);
    112     es = new _Edge[(const int)(m + 1)];
    113     for(int i = 1; i <= m; i++){
    114         readInteger(es[i].from);
    115         readInteger(es[i].end);
    116         readInteger(es[i].w);
    117     }
    118 }
    119 
    120 boolean cmpare(const _Edge& a, const _Edge& b){
    121     return a.w > b.w;
    122 }
    123 
    124 MapManager g;
    125 union_found uf;
    126 inline void init_map(){
    127     g = MapManager(n * 2, n);
    128     uf = union_found(n);
    129     sort(es + 1, es + m + 1, cmpare);
    130     int finished = 0;
    131     for(int i = 1; i <= m; i++){
    132         if(!uf.connected(es[i].from, es[i].end)){
    133             uf.unit(es[i].from, es[i].end);
    134             g.addDoubleEdge(es[i].from, es[i].end, es[i].w);
    135             finished++;
    136         }
    137         if(finished == n - 1)    break;
    138     }
    139     delete[] es;
    140 }
    141 
    142 int* depth;
    143 boolean* visited;
    144 int* fa;
    145 int* df;
    146 void dfs(int node, int last, int dep, int dis){
    147     visited[node] = true;
    148     fa[node] = last;
    149     df[node] = dis;
    150     depth[node] = dep;
    151     for(int i = m_begin(g, node); i != 0; i = m_next(g, i)){
    152         int& e = m_end(g, i);
    153         if(visited[e])    continue;
    154         dfs(e, node, dep + 1, m_w(g, i));
    155     }
    156 }
    157 
    158 inline void init_dfs(){
    159     depth = new int[(const int)(n + 1)];
    160     visited = new boolean[(const int)(n + 1)];
    161     fa = new int[(const int)(n + 1)];
    162     df = new int[(const int)(n + 1)];
    163     memset(visited, false, sizeof(boolean) * (n + 1));
    164     for(int i = 1; i <= n; i++){
    165         if(!visited[i])
    166             dfs(i, 0, 1, 0);
    167     }
    168 }
    169 
    170 Matrix<int> up;
    171 Matrix<int> dis;
    172 inline void init_bz(){
    173     up = Matrix<int>(16, n + 1);
    174     dis = Matrix<int>(16, n + 1);
    175     memset(up.p, 0, sizeof(int) * 16 * (n + 1));
    176     memset(dis.p, 0x7f, sizeof(int) * 16 * (n + 1));
    177     for(int i = 1; i <= n; i++){
    178         up[i][0] = fa[i];
    179         dis[i][0] = df[i];
    180     }
    181     for(int j = 1; j <= 14; j++){
    182         for(int i = 1; i <= n; i++){
    183             up[i][j] = up[up[i][j - 1]][j - 1];
    184             dis[i][j] = min(dis[i][j - 1], dis[up[i][j - 1]][j - 1]);
    185         }
    186     }
    187 }
    188 
    189 int lca(int a, int b){    
    190     if(!uf.connected(a, b))    return -1;
    191     int result = 0xfffffff;
    192     if(depth[a] < depth[b])    swap(a, b);
    193     int c = depth[a] - depth[b];
    194     for(int i = 0; i <= 14; i++){
    195         if(c & (1 << i)){
    196             smin(result, dis[a][i]);
    197             a = up[a][i];
    198         }
    199     }
    200     if(a == b)    return result;
    201     for(int i = 14; i >= 0; i--){
    202         if(up[a][i] != up[b][i]){
    203             smin(result, dis[a][i]);
    204             smin(result, dis[b][i]);
    205             a = up[a][i];
    206             b = up[b][i];
    207         }
    208     }
    209     smin(result, dis[a][0]);
    210     smin(result, dis[b][0]);
    211     return result;
    212 }
    213 
    214 int q;
    215 inline void solve(){
    216     readInteger(q);
    217     for(int i = 1, a, b; i <= q; i++){
    218         readInteger(a);
    219         readInteger(b);
    220         int l = lca(a, b);
    221         printf("%d
    ", l);
    222     }
    223 }
    224 
    225 ///Main Funtion
    226 int main(int argc, char* argv[]){
    227     init();
    228     init_map();
    229     init_dfs();
    230     init_bz();
    231     solve();
    232     return 0;
    233 }

    (代码有点长,还是比较便于理解)

  • 相关阅读:
    webDriver检索table数据
    C# 遍历枚举
    Java——Iterate through a HashMap
    Java——Read/convert an InputStream to a String
    简单的异步HTTP服务端和客户端
    授信主体查找
    mysql 事务测试
    mysql 替换
    如何查看由EF生成的SQL?
    C# 如何用多字符分割字符串
  • 原文地址:https://www.cnblogs.com/yyf0309/p/5660132.html
Copyright © 2020-2023  润新知