• bzoj 4555 求和


    题目大意:

    求$sumlimits_{i=0}^n sumlimits_{j=0}^i S2(i,j) imes 2^j imes j!$

    思路:

    法1:

    首先把斯特林数展开$S2(i,j)=frac{1}{j!} sumlimits_{k=0}^j (-1)^k * inom{j}{k} * (j-k)^i$

    然后先交换求和顺序提出只与$j$有关的项,同时把$j$的范围可以扩展到$n$

    代入得到:$sumlimits_{j=0}^n 2^j * j! sumlimits_{i=0}^n sumlimits_{k=0}^j frac{(-1)^k}{j!} * inom{j}{k} * (j-k)^i$ 

    拆开组合数:$sumlimits_{j=0}^n 2^j * j! sumlimits_{i=0}^n sumlimits_{k=0}^j frac{(-1)^k}{k!} * frac{(j-k)^i}{(j-k)!}$ 

    把只于$k$有关的提出来:$sumlimits_{j=0}^n 2^j * j! sumlimits_{k=0}^j frac{(-1)^k}{k!} * frac{sumlimits_{i=0}^n (j-k)^i}{(j-k)!}$ 

    设$f(i)=frac {(-1)^i}{i!},g(i)=frac{sumlimits_{j=0}^n i^j}{i!}$

    则原式为$sumlimits_{i=0}^n 2^i imes (i!) imes (f*g)(i)$

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<queue>
     8 #include<vector>
     9 #include<map>
    10 #include<set>
    11 #define ll long long
    12 #define db double
    13 #define inf 2139062143
    14 #define MAXN 200100
    15 #define MOD 998244353
    16 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
    17 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
    18 #define ren for(register int i=fst[x];i;i=nxt[i])
    19 #define pb(i,x) vec[i].push_back(x)
    20 #define pls(a,b) ((a+b)%MOD+MOD)%MOD
    21 #define mns(a,b) ((a%MOD-(b)%MOD)%MOD+MOD)%MOD
    22 #define mul(a,b) (1LL*(a)*(b))%MOD
    23 using namespace std;
    24 inline int read()
    25 {
    26     int x=0,f=1;char ch=getchar();
    27     while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
    28     while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
    29     return x*f;
    30 }
    31 int n,a[MAXN<<1],b[MAXN<<1],fac[MAXN],ifac[MAXN];
    32 int rev[MAXN<<1],lim,lg,pw[30],ipw[30],ans;
    33 int q_pow(int bas,int t,int res=1)
    34 {
    35     for(;t;t>>=1,bas=mul(bas,bas)) if(t&1) res=mul(res,bas);return res;
    36 }
    37 #define inv(x) q_pow(x,MOD-2)
    38 void ntt(int *a,int n,int f)
    39 {
    40     rep(i,0,n-1) if(i<rev[i]) swap(a[i],a[rev[i]]);
    41     for(int i=1,t=1;i<n;i<<=1,++t)
    42     {
    43         int wn= f>0?pw[t]:ipw[t];for(int j=0;j<n;j+=i<<1)
    44         {
    45             int w=1,x,y;for(int k=0;k<i;++k,w=mul(w,wn))
    46                 x=a[j+k],y=mul(a[j+k+i],w),a[j+k]=pls(x,y),a[j+k+i]=mns(x,y);
    47         }
    48     }
    49     if(f>0) return ;int nv=inv(n);rep(i,0,n-1) a[i]=mul(a[i],nv);
    50 }
    51 int main()
    52 {
    53     n=read();fac[0]=ifac[0]=1;rep(i,1,n) fac[i]=mul(fac[i-1],i),ifac[i]=inv(fac[i]);
    54     int tmp=-1;rep(i,0,n) tmp=(MOD-tmp)%MOD,a[i]=mul(tmp,ifac[i]);
    55     b[0]=1,b[1]=n+1;rep(i,2,n) b[i]=mul(ifac[i],mul(inv(i-1),(q_pow(i,n+1)-1)));
    56     for(lim=1,lg=1;lim<=(n+1<<1);lim<<=1,lg++)
    57         pw[lg]=q_pow(3,(MOD-1)/(1<<lg)),ipw[lg]=inv(pw[lg]);
    58     rep(i,1,lim-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-2);
    59     ntt(a,lim,1);ntt(b,lim,1);rep(i,0,lim-1) a[i]=mul(a[i],b[i]);ntt(a,lim,-1);
    60     tmp=1;rep(i,0,n) ans=pls(ans,mul(mul(a[i],tmp),fac[i])),tmp=pls(tmp,tmp);
    61     printf("%d
    ",ans);
    62 }
    View Code

    法2:

    思考式子的组合意义,考虑$f(i)=sumlimits_{j=0}^i S2(i,j) imes 2^j imes j!$

    即表示将$i$个数分成$j$个有序集合且每个集合有两种状态的所有方案

    那么我们可以枚举最后一个集合中数的数量即$f(n)=sumlimits_{i=1}^n 2 * inom{n}{i}* f(n-i)$

    两边同除以阶乘,然后就可以分治或者求逆了

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<queue>
     8 #include<vector>
     9 #include<map>
    10 #include<set>
    11 #define ll long long
    12 #define db double
    13 #define inf 2139062143
    14 #define MAXN 200100
    15 #define MOD 998244353
    16 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
    17 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
    18 #define ren for(register int i=fst[x];i;i=nxt[i])
    19 #define pb(i,x) vec[i].push_back(x)
    20 #define pls(a,b) ((a+b)%MOD+MOD)%MOD
    21 #define mns(a,b) ((a%MOD-(b)%MOD)%MOD+MOD)%MOD
    22 #define mul(a,b) (1LL*(a)*(b))%MOD
    23 using namespace std;
    24 inline int read()
    25 {
    26     int x=0,f=1;char ch=getchar();
    27     while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
    28     while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
    29     return x*f;
    30 }
    31 int n,a[MAXN<<1],b[MAXN<<1],fac[MAXN],ifac[MAXN],iv[MAXN<<1],tmp[MAXN<<1];
    32 int rev[MAXN<<1],lim,lg,pw[30],ipw[30],ans,l2[MAXN<<2];
    33 int q_pow(int bas,int t,int res=1)
    34 {
    35     for(;t;t>>=1,bas=mul(bas,bas)) if(t&1) res=mul(res,bas);return res;
    36 }
    37 #define inv(x) q_pow(x,MOD-2)
    38 void ntt(int *a,int n,int f)
    39 {
    40     rep(i,0,n-1) if(i<rev[i]) swap(a[i],a[rev[i]]);
    41     for(int i=1,t=1;i<n;i<<=1,++t)
    42     {
    43         int wn= f>0?pw[t]:ipw[t];for(int j=0;j<n;j+=i<<1)
    44         {
    45             int w=1,x,y;for(int k=0;k<i;++k,w=mul(w,wn))
    46                 x=a[j+k],y=mul(a[j+k+i],w),a[j+k]=pls(x,y),a[j+k+i]=mns(x,y);
    47         }
    48     }
    49     if(f>0) return ;int nv=inv(n);rep(i,0,n-1) a[i]=mul(a[i],nv);
    50 }
    51 void solve(int *a,int *b,int lmt)
    52 {
    53     rep(i,1,lmt-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<l2[lmt]-1);
    54     ntt(a,lmt,1);ntt(b,lmt,1);
    55     rep(i,0,lmt-1) a[i]=mul(mns(2,mul(a[i],b[i])),a[i]);ntt(a,lmt,-1);
    56 }
    57 void Inv(int *a,int *f,int lmt)
    58 {
    59     f[0]=inv(a[0]);for(int t=2;t<=lmt;t<<=1)
    60         {rep(i,0,t-1)tmp[i]=a[i];solve(f,tmp,t<<1);rep(i,t,(t<<1)-1) f[i]=0;}
    61 }
    62 int main()
    63 {
    64     n=read();fac[0]=ifac[0]=1;rep(i,1,n) fac[i]=mul(fac[i-1],i),ifac[i]=inv(fac[i]);
    65     for(lim=1,lg=1;lim<=(n+1)<<1;lim<<=1,lg++)
    66         l2[1<<lg]=lg,pw[lg]=q_pow(3,(MOD-1)/(1<<lg)),ipw[lg]=inv(pw[lg]);
    67     lim>>=1;rep(i,1,n) b[i]=mns(MOD,mul(2,ifac[i]));b[0]=pls(b[0],1);
    68     Inv(b,a,lim);rep(i,0,n) ans=pls(ans,mul(a[i],fac[i]));printf("%d
    ",ans);
    69 }
    View Code
  • 相关阅读:
    CSS标题省略号带后缀名称
    vue post下载
    PiNetwork – 国外手机挖矿,目前国外热度很高
    iview table expand 单击当前行控制
    iview 开关变化时控制状态的变更
    CSS伪元素before,after制作左右横线中间文字效果
    idea 修改代码自动编译
    如何获取微信公众号的关注链接?
    震惊,微信小程序可以设置网络字体!真香
    小程序字体大小怎么设置,小程序修改字体样式方法
  • 原文地址:https://www.cnblogs.com/yyc-jack-0920/p/10649956.html
Copyright © 2020-2023  润新知