• Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)


    背景:

    需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新broadcast的用法,于是就这几天进行了反复测试。经过了一下两个测试::Spark Streaming更新broadcast、Spark Structured Streaming更新broadcast。

    1)Spark Streaming更新broadcast(可行)

      def sparkStreaming(): Unit = {
        // Create a local StreamingContext with two working thread and batch interval of 1 second.
        // The master requires 2 cores to prevent a starvation scenario.
        val conf = new SparkConf().setMaster("local[*]").setAppName("NetworkWordCount")
        val ssc = new StreamingContext(conf, Seconds(15))
    
        // Create a DStream that will connect to hostname:port, like localhost:9999
        val lines = ssc.socketTextStream(ipAddr, 19999)
        val mro = lines.map(row => {
          val fields = row.split(",")
          Mro(fields(0), fields(1))
        })
    
        val cellJoinMro = mro.transform(row => {
          if (1 < 3) {
            println("更新broadcast..." + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date()))
            BroadcastWrapper.update(ssc.sparkContext)
          }
          var broadcastCellRes = BroadcastWrapper.getInstance(ssc.sparkContext)
          row.map(row => {
            val int_id: String = row.int_id
            val rsrp: String = row.rsrp
            val findResult: String = String.join(",", broadcastCellRes.value.get(int_id).get)
            val timeStamps: String = String.join(",", findResult)
    
            CellJoinMro(int_id, rsrp, timeStamps)
          })
        })
    
        cellJoinMro.print()
    
        ssc.start() // Start the computation
        ssc.awaitTermination() // Wait for the computation to terminate
      }
    import org.apache.spark.SparkContext
    import org.apache.spark.broadcast.Broadcast
    
    object BroadcastWrapper {
      @volatile private var instance: Broadcast[Map[String, java.util.List[String]]] = null
      private val baseDir = "/user/my/streaming/test/"
    
      def loadData(): Map[String, java.util.List[String]] = {
        val files = HdfsUtil.getFiles(baseDir)
    
        var latest: String = null
        for (key <- files.keySet) {
          if (latest == null) latest = key
          else if (latest.compareTo(key) <= 0) latest = key
        }
    
        val filePath = baseDir + latest
    
        val map = HdfsUtil.getFileContent(filePath)
        map
      }
    
      def update(sc: SparkContext, blocking: Boolean = false): Unit = {
        if (instance != null)
          instance.unpersist(blocking)
        instance = sc.broadcast(loadData())
      }
    
      def getInstance(sc: SparkContext): Broadcast[Map[String, java.util.List[String]]] = {
        if (instance == null) {
          synchronized {
            if (instance == null) {
              instance = sc.broadcast(loadData)
            }
          }
        }
        instance
      }
    
    }
    
    import java.io.{BufferedReader, InputStreamReader}
    import java.text.SimpleDateFormat
    import org.apache.hadoop.conf.Configuration
    import org.apache.hadoop.fs.Path
    import org.apache.hadoop.fs.FileSystem
    import scala.collection.mutable
    
    object HdfsUtil {
      private val sdf = new SimpleDateFormat("yyyy-MM-dd 00:00:00")
    
      def getFiles(path: String): mutable.Map[String, String] = {
        val fileItems = new mutable.LinkedHashMap[String, String]
        val fs = FileSystem.get(new Configuration())
        val files = fs.listStatus(new Path(path))
        var pathStr: String = ""
        for (file <- files) {
          if (file.isFile) {
            pathStr = file.getPath().getName()
            fileItems.put(pathStr.split("/")(pathStr.split("/").length - 1), pathStr)
          }
        }
    
        fs.close()
    
        fileItems
      }
    
      def getFileContent(filePath: String): Map[String, java.util.List[String]] = {
        val map = new mutable.LinkedHashMap[String, java.util.List[String]]
    
        val fs = FileSystem.get(new Configuration())
        val path = new Path(filePath)
        if (fs.exists(path)) {
          val bufferedReader = new BufferedReader(new InputStreamReader(fs.open(path)))
          var line: String = null
          line = bufferedReader.readLine()
          while (line != null) {
    
            val fields: Array[String] = line.split(",")
            val int_id: String = fields(0)
            val date = new java.util.Date(java.lang.Long.valueOf(fields(2)))
            val time = sdf.format(date)
            System.out.println(line + "(" + time + ")")
    
            if (!map.keySet.contains(int_id))
              map.put(int_id, new java.util.ArrayList[String])
            map.get(int_id).get.add(time)
    
            line = bufferedReader.readLine()
          }
    
          map.toMap
        } else {
          throw new RuntimeException("the file do not exists")
        }
      }
    }

    测试日志:

    18/11/19 16:50:15 INFO scheduler.DAGScheduler: Job 2 finished: print at App.scala:59, took 0.080061 s
    -------------------------------------------
    Time: 1542617415000 ms
    -------------------------------------------
    CellJoinMro(2,333,2018-11-05 00:00:00)
    。。。。
    18/11/19 16:50:15 INFO storage.BlockManagerInfo: Removed input-0-1542617392400 on 10.60.0.11:1337 in memory (size: 12.0 B, free: 456.1 MB)
    》》》》》》》》》》》》》》》》此时路径上传新资源文件》》》》》》》》》》》》》》》》》》》》》》
    更新broadcast...2018-11-19 16:50:30
    。。。
    1,111,1541433600000(2018-11-06 00:00:00)
    2,222,1541433600000(2018-11-06 00:00:00)
    3,333,1541433600000(2018-11-06 00:00:00)
    18/11/19 16:50:30 INFO memory.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 688.0 B, free 456.1 MB)
    。。
    18/11/19 16:50:30 INFO scheduler.JobScheduler: Starting job streaming job 1542617430000 ms.0 from job set of time 1542617430000 ms
    -------------------------------------------
    Time: 1542617430000 ms
    -------------------------------------------
    
    18/11/19 16:50:30 INFO scheduler.JobScheduler: Finished job streaming job 1542617430000 ms.0 from job set of time 1542617430000 ms
    。。。。
    18/11/19 16:50:32 WARN storage.BlockManager: Block input-0-1542617432400 replicated to only 0 peer(s) instead of 1 peers
    18/11/19 16:50:32 INFO receiver.BlockGenerator: Pushed block input-0-1542617432400
    更新broadcast...2018-11-19 16:50:45
    1,111,1541433600000(2018-11-06 00:00:00)
    2,222,1541433600000(2018-11-06 00:00:00)
    3,333,1541433600000(2018-11-06 00:00:00)
    18/11/19 16:50:45 INFO memory.MemoryStore: Block broadcast_6 stored as values in memory (estimated size 688.0 B, free 456.1 MB)
    。。。。
    18/11/19 16:50:45 INFO scheduler.DAGScheduler: Job 3 finished: print at App.scala:59, took 0.066975 s
    -------------------------------------------
    Time: 1542617445000 ms
    -------------------------------------------
    CellJoinMro(3,4444,2018-11-06 00:00:00)
    
    18/11/19 16:50:45 INFO scheduler.JobScheduler: Finished job streaming job 1542617445000 ms.0 from job set of time 1542617445000 ms
    18/11/19 16:50:45 INFO scheduler.JobScheduler: Total delay: 0.367 s for time 1542617445000 ms (execution: 0.083 s)
    18/11/19 16:50:45 INFO rdd.MapPartitionsRDD: Removing RDD 9 from persistence list

    日志分析:

    每个batch都执行transform中的更新broadcast代码,而且也执行了broadcast获取代码。因此,每次都可进行更新broadcast内容,并且获取到broadcast中的内容。

    2)Spark Structured Streaming更新broadcast(不可行【可行】

    目前测试可行请参考《Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)

     def sparkStructuredStreaming(): Unit = {
        val spark = SparkSession.builder.appName("Test_Broadcast_ByScala_App").getOrCreate()
        spark.streams.addListener(new StreamingQueryListener {
          override def onQueryStarted(event: StreamingQueryListener.QueryStartedEvent): Unit = {
            println("*************** onQueryStarted  ***************")
          }
    
          override def onQueryProgress(event: StreamingQueryListener.QueryProgressEvent): Unit = {
            println("*************** onQueryProgress  ***************")
            //        这段代码可以把broadcast对象更新成功,但是spark structured streaming内部读取到的broadcast对象数据依然是老数据。
            //        BroadcastWrapper.update(spark.sparkContext, true)
            println("*************** onQueryProgress update broadcast " + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date()))
    
          }
    
          override def onQueryTerminated(event: StreamingQueryListener.QueryTerminatedEvent): Unit = {
            println("*************** onQueryTerminated  ***************")
          }
        })
        // Create DataFrame representing the stream of input lines from connection to localhost:9999
        val lines = spark.readStream.format("socket").option("host", ipAddr).option("port", 19999).load()
    
        import spark.implicits._
        val mro = lines.as(Encoders.STRING).map(row => {
          val fields = row.split(",")
          Mro(fields(0), fields(1))
        })
    
        val cellJoinMro = mro.transform(row => {
          //      这段代码在第一次触发时执行,之后触发就不再执行。
          println("更新broadcast..." + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new java.util.Date()))
          if (1 < 3) {
            println("------------------------1111-----------------------------")
            BroadcastWrapper.update(spark.sparkContext)
          }
          var broadcastCellRes = BroadcastWrapper.getInstance(spark.sparkContext)
          row.map(row => {
            val int_id: String = row.int_id
            val rsrp: String = row.rsrp
            val findResult: String = String.join(",", broadcastCellRes.value.get(int_id).get)
            val timeStamps: String = String.join(",", findResult)
    
            CellJoinMro(int_id, rsrp, timeStamps)
          })
        })
    
        val query = cellJoinMro.writeStream.format("console")
          .outputMode("update")
          .trigger(Trigger.ProcessingTime(15, TimeUnit.SECONDS))
          .start()
    
        query.awaitTermination()
      }

    执行日志:

    18/11/19 17:12:49 INFO state.StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
    18/11/19 17:12:50 WARN streaming.TextSocketSourceProvider: The socket source should not be used for production applications! It does not support recovery.
    更新broadcast...2018-11-19 17:12:51
    ------------------------1111-----------------------------
    1,111,1541347200000(2018-11-05 00:00:00)
    2,222,1541347200000(2018-11-05 00:00:00)
    3,333,1541347200000(2018-11-05 00:00:00)
    .....
    -------------------------------------------
    Batch: 0
    -------------------------------------------
    18/11/19 17:13:03 INFO codegen.CodeGenerator: Code generated in 82.760622 ms
    。。。。
    18/11/19 17:13:19 INFO scheduler.DAGScheduler: Job 4 finished: start at App.scala:109, took 4.215709 s
    +------+----+-------------------+
    |int_id|rsrp|          timestamp|
    +------+----+-------------------+
    |     1|  22|2018-11-05 00:00:00|
    +------+----+-------------------+
    
    18/11/19 17:14:00 INFO streaming.StreamExecution: Committed offsets for batch 1. Metadata OffsetSeqMetadata(0,1542618840003,Map(spark.sql.shuffle.partitions -> 600))
    
    此时更新资源文件,附加2018-11-06的资源文件。
    -------------------------------------------
    Batch: 1
    -------------------------------------------
    18/11/19 17:14:00 INFO spark.SparkContext: Starting job: start at App.scala:109
    。。。
    18/11/19 17:14:05 INFO scheduler.DAGScheduler: Job 9 finished: start at App.scala:109, took 3.068106 s
    +------+----+-------------------+
    |int_id|rsrp|          timestamp|
    +------+----+-------------------+
    |     2| 333|2018-11-05 00:00:00|
    +------+----+-------------------+

    日志分析:

    测试结论:

    Spark Streaming更新broadcast(可行)、Spark Structured Streaming更新broadcast(不可行也可行,如果按照上边spark streaming的方法是不行的,但是有其他方案),原因Spark Streaming的执行引擎是Spark Engine,是代码执行,在算子的构造函数中可以访问SparkContext,SparkSession,而且这些类构造函数是可以每次都执行的。

    而Spark Structured Streaming的执行引擎是Spark Sql Engine,是把代码优化为Spark Sql Engine希望的格式去执行,不可以在每次trigger事件触发都执行执行块以外的代码,因此这些类构造函数块代码只能执行一次,执行块类似MapFunction的call()函数内,不允许访问SparkContext,SparkSession对象,因此无处进行每次trigger都进行broadcast更新。

    那么,如何在Spark Struectured Streaming中实现更新broadcast的方案,升级spark版本,从spark2.3.0开始,spark structured streaming支持了stream join stream(请参考《Spark2.3(三十七):Stream join Stream(res文件每天更新一份)》)。

    实际上,@2019-03-27测试结果中可以得到新的方案,也是使用broadcast方式更新得到方案。目前测试可行请参考《Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)

  • 相关阅读:
    Ralasafe基于策略模型
    如何让Oracle表字段自动增长
    Oracle中Number类型字段使用.netTiers和CodeSmith问题的解决方案
    GridView的DataFormatString参考
    解决.NET连接Oracle数据库的一些问题(转)
    C# WinForm开发系列 DataGridView
    C# 插件式程序开发
    Oracle中“字符串中的字符大小写敏感处理方法”
    做一个项目,平时都用到哪些工具提高效率(中)
    折腾了这么多年的.NET开发,也只学会了这么几招 软件开发不是生活的全部,但是好的生活全靠它了(转)
  • 原文地址:https://www.cnblogs.com/yy3b2007com/p/9984618.html
Copyright © 2020-2023  润新知