• Spark:reduceByKey函数的用法


    reduceByKey函数API:

    def reduceByKey(partitioner: Partitioner, func: JFunction2[V, V, V]): JavaPairRDD[K, V]
    
    def reduceByKey(func: JFunction2[V, V, V], numPartitions: Int): JavaPairRDD[K, V]

     该函数利用映射函数将每个K对应的V进行运算。 

    其中参数说明如下:
    - func:映射函数,根据需求自定义;
    - partitioner:分区函数;
    - numPartitions:分区数,默认的分区函数是HashPartitioner。

    返回值:可以看出最终是返回了一个KV键值对。

    使用示例:

    linux:/$ spark-shell
    。。。
    17/10/28 20:33:54 WARN SparkConf: In Spark 1.0 and later spark.local.dir will be overridden by the value set by the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone and LOCAL_DIRS in YARN).
    17/10/28 20:33:55 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set.
    Spark context available as sc.
    17/10/28 20:33:57 WARN SessionState: load mapred-default.xml, HIVE_CONF_DIR env not found!
    17/10/28 20:33:58 WARN SessionState: load mapred-default.xml, HIVE_CONF_DIR env not found!
    SQL context available as sqlContext.
    
    scala> val x = sc.parallelize(List(
         |     ("a", "b", 1),
         |     ("a", "b", 1),
         |     ("c", "b", 1),
         |     ("a", "d", 1))
         | )
    x: org.apache.spark.rdd.RDD[(String, String, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:21
    
    scala> val byKey = x.map({case (id,uri,count) => (id,uri)->count})
    byKey: org.apache.spark.rdd.RDD[((String, String), Int)] = MapPartitionsRDD[1] at map at <console>:23
    
    scala> val reducedByKey = byKey.reduceByKey(_ + _)
    reducedByKey: org.apache.spark.rdd.RDD[((String, String), Int)] = ShuffledRDD[2] at reduceByKey at <console>:25
    
    
    scala> reducedByKey.collect.foreach(println)
    ((c,b),1)
    ((a,d),1)
    ((a,b),2)

     使用reduceByKey实现group by:

    假设有一张表:my_table,按照key进行group by并统计出((l_scrsrp-l_ncrsrp)-(scrsrp-ncrsrp))*((l_scrsrp-l_ncrsrp)-(scrsrp-ncrsrp)),以及count个数:

    create table if not exists my_table(
    key string,
    l_scrsrp int,
    l_ncrsrp int,
    scrsrp int,
    ncrsrp int
    )
    insert into my_table(key,l_scrsrp,l_ncrsrp,scrsrp,ncrsrp)values("key1",1,0,2,0);
    insert into my_table(key,l_scrsrp,l_ncrsrp,scrsrp,ncrsrp)values("key1",1,0,2,0);
    insert into my_table(key,l_scrsrp,l_ncrsrp,scrsrp,ncrsrp)values("key2",1,0,2,0);
    insert into my_table(key,l_scrsrp,l_ncrsrp,scrsrp,ncrsrp)values("key3",1,0,3,0);
    insert into my_table(key,l_scrsrp,l_ncrsrp,scrsrp,ncrsrp)values("key2",1,0,3,0);
    0: jdbc:hive2://xx.xx.xx.xx:xxxx/> 
    0: jdbc:hive2://xx.xx.xx.xx:xxxx/> select key,sum(((l_scrsrp-l_ncrsrp)-(scrsrp-ncrsrp))*((l_scrsrp-l_ncrsrp)-(scrsrp-ncrsrp))),count(0) myvalue 
    0: jdbc:hive2://xx.xx.xx.xx:xxxx/> from my_table
    0: jdbc:hive2://xx.xx.xx.xx:xxxx/> group by key;

    +-------+------+----------+--+ | key | _c1 | myvalue | +-------+------+----------+--+ | key1 | 2 | 2 | | key2 | 5 | 2 | | key3 | 4 | 1 | +-------+------+----------+--+

    使用reduceByKey实现的代码如下:

    scala> val y=sc.parallelize(List(
         | ("key1",1,0,2,0),
         | ("key1",1,0,2,0),
         | ("key2",1,0,2,0),
         | ("key3",1,0,3,0),
         | ("key2",1,0,3,0)
         | ))
    y: org.apache.spark.rdd.RDD[(String, Int, Int, Int, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:21
    
    scala> val byKey = y.map({case (key,scrsrp,ncrsrp,l_scrsrp,l_ncrsrp) => (key)->((((l_scrsrp-l_ncrsrp)-(scrsrp-ncrsrp))*((l_scrsrp-l_ncrsrp)-(scrsrp-ncrsrp))),(1))})
    byKey: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[1] at map at <console>:23
    scala> byKey.foreach(println)
    (key3,(4,1))
    (key1,(1,1))
    (key1,(1,1))
    (key2,(1,1))
    (key2,(4,1))
    
    scala> val reducedByKey = byKey.reduceByKey((x1, x2) =>(x1._1 + x2._1,x1._2 + x2._2))
    reducedByKey: org.apache.spark.rdd.RDD[(String, (Int, Int))] = ShuffledRDD[3] at reduceByKey at <console>:25
    
    scala> reducedByKey.collect.foreach(println)
    (key1,(2,2))                                                                    
    (key2,(5,2))
    (key3,(4,1))

     实现统计字符个数:

    scala> val x = sc.parallelize(List("a", "b", "a", "a", "b", "b", "b", "b"))  
    x: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[4] at parallelize at <console>:21
    
    scala>  val s = x.map((_, 1))  
    s: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[5] at map at <console>:23
    
    scala> val result = s.reduceByKey((pre, after) => pre + after)  
    result: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[6] at reduceByKey at <console>:25
    
    scala> println(result.collect().toBuffer)  
    ArrayBuffer((a,3), (b,5))
    
    scala> result.foreach(println)
    (a,3)
    (b,5)
  • 相关阅读:
    对于Dubbo一些面试题自己的答案
    序列化和反序列化的简单理解
    学习Spring-Session+Redis实现session共享
    Java中的String,StringBuilder,StringBuffer三者的区别
    个人对数据结构的理解和总结
    LeetCode 101. Symmetric Tree
    LeetCode 100. Same Tree
    LeetCode 88. Merge Sorted Array
    LeetCode 83. Remove Duplicates from Sorted List
    LeetCode 70. Climbing Stairs
  • 原文地址:https://www.cnblogs.com/yy3b2007com/p/7748074.html
Copyright © 2020-2023  润新知