Maximum Product Subarray
Title:
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:
max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])
min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])
class Solution { public: int maxProduct(vector<int>& nums) { int pmin = nums[0]; int pmax = nums[0]; int result = nums[0]; for (int i = 1; i < nums.size(); i++){ int t1= pmax * nums[i]; int t2= pmin * nums[i]; pmax = max(nums[i],max(t1,t2)); pmin = min(nums[i],min(t1,t2)); result = max(result,pmax); } return result; } };
Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
http://blog.csdn.net/joylnwang/article/details/6859677
http://blog.csdn.net/linhuanmars/article/details/21314059
class Solution{ public: int maxSubArray(int A[], int n) { int maxSum = A[0]; int sum = A[0]; for (int i = 1; i < n; i++){ if (sum < 0) sum = 0; sum += A[i]; maxSum = max(sum,maxSum); } return maxSum; } };
扩展:子序列之和最接近于0
先对数组进行累加,这样得到同样长度的数组,然后,对数组排序,对排序后的数组相邻的元素相减计算绝对值,并比较大小。
class Solution{ public: vector<int> simple(vector<int> nums,int target){ int min_gap = INT_MAX; int index_min ; int index_max; for (int i = 0; i < nums.size(); i++){ int sum = 0; for (int j = i; j < nums.size(); j++){ sum += nums[j]; if (min_gap > abs(sum-target)){ min_gap = abs(sum-target); index_min = i; index_max = j; } } } vector<int> result(nums.begin()+index_min,nums.begin()+index_max+1); return result; } vector<int> choose(vector<int> nums, int target){ vector<pair<int,int> > addSums(nums.size()); addSums[0] = make_pair(nums[0],0); for (int i =1; i < nums.size(); i++){ addSums[i] = make_pair(addSums[i-1].first + nums[i],i); } sort(addSums.begin(),addSums.end()); int min_gap = INT_MAX; int index = -1; for (int i = 1; i < addSums.size(); i++){ int t = abs(addSums[i].first - addSums[i-1].first); if (min_gap > t){ min_gap = t; index = i; } } int index_min = min(addSums[index].second,addSums[index-1].second); int index_max = max(addSums[index].second,addSums[index-1].second); vector<int> result(nums.begin()+index_min+1,nums.begin()+index_max+1); return result; } };
这种做法我没有想到如何扩展到任意的t上面