• LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关


    Maximum Product Subarray

    Title:

    Find the contiguous subarray within an array (containing at least one number) which has the largest product.

    For example, given the array [2,3,-2,4],
    the contiguous subarray [2,3] has the largest product = 6.

    对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:

    max_copy[i] = max_local[i]
    max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]),  min_local * A[i])

    min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]),  min_local * A[i])

    class Solution {
    public:
        int maxProduct(vector<int>& nums) {
            int pmin = nums[0];
            int pmax = nums[0];
            int result = nums[0];
            for (int i = 1; i < nums.size(); i++){
                int t1= pmax * nums[i];
                int t2= pmin * nums[i];
                pmax = max(nums[i],max(t1,t2));
                pmin = min(nums[i],min(t1,t2));
                result = max(result,pmax);
            }
            return result;
        }
    };

    Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

    For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
    the contiguous subarray [4,−1,2,1] has the largest sum = 6.

    http://blog.csdn.net/joylnwang/article/details/6859677

    http://blog.csdn.net/linhuanmars/article/details/21314059

    class Solution{
    public:
        int maxSubArray(int A[], int n) {
            int maxSum = A[0];
            int sum = A[0];
            for (int i = 1; i < n; i++){
                if (sum < 0)
                    sum = 0;
                sum += A[i];
                maxSum = max(sum,maxSum);
            }
            return maxSum;
        }
    };

     扩展:子序列之和最接近于0

    先对数组进行累加,这样得到同样长度的数组,然后,对数组排序,对排序后的数组相邻的元素相减计算绝对值,并比较大小。

    class Solution{
    public:
        vector<int> simple(vector<int> nums,int target){
            int min_gap = INT_MAX;
            int index_min ;
            int index_max;
            for (int i = 0; i < nums.size(); i++){
                int sum = 0;
                for (int j = i; j < nums.size(); j++){
                    sum += nums[j];
                    if (min_gap > abs(sum-target)){
                        min_gap = abs(sum-target);
                        index_min = i;
                        index_max = j;
                    }
                }
            }
            vector<int> result(nums.begin()+index_min,nums.begin()+index_max+1);
            return result;
        }
        vector<int> choose(vector<int> nums, int target){
            vector<pair<int,int> > addSums(nums.size());
            addSums[0] = make_pair(nums[0],0);
            for (int i =1; i < nums.size(); i++){
                addSums[i] = make_pair(addSums[i-1].first + nums[i],i);
            }
            sort(addSums.begin(),addSums.end());
            int min_gap = INT_MAX;
            int index = -1;
            for (int i = 1; i < addSums.size(); i++){
                int t = abs(addSums[i].first - addSums[i-1].first);
                if (min_gap > t){
                    min_gap = t;
                    index = i;
                }
            }
            int index_min = min(addSums[index].second,addSums[index-1].second);
            int index_max = max(addSums[index].second,addSums[index-1].second);
            vector<int> result(nums.begin()+index_min+1,nums.begin()+index_max+1);
            return result;
        }
    };

    这种做法我没有想到如何扩展到任意的t上面

  • 相关阅读:
    网络流
    Link-Cut-Tree题集
    动态点分治
    斜率优化DP
    【Python学习之旅】---继承的方式完成包装(授权、item系列、str&repr、format 自定义格式方法)
    【Python学习之旅】---动态导入模块
    【Python学习之旅】---封装与反射(类的相关知识,面向对象三大特性:继承-多态-封装)
    【Python学习之旅】---多态(类的相关知识,面向对象三大特性:继承-多态-封装)
    【Python学习之旅】---多态(类的相关知识)
    【Python学习之旅】---继承(类的相关知识)
  • 原文地址:https://www.cnblogs.com/yxzfscg/p/4537970.html
Copyright © 2020-2023  润新知