• LeetCode: Unique Paths I & II & Minimum Path Sum


    Title:

    https://leetcode.com/problems/unique-paths/

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    Above is a 3 x 7 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    思路:直观的思路是使用递归,但是会超时

    class Solution{
    public:
        int m;
        int n;
        int uniquePaths(int m, int n) {
            this->m = m;
            this->n = n;
            int sum = 0;
            fun(1,1,sum);
            return sum;
        }
        void fun(int i,int j,int& sum){
            if (i == m && j == n)
                sum++;
            if (i > m || j > n)
                return ;
            fun(i+1,j,sum);
            fun(i,j+1,sum);
        }
    };
    int uniquePaths(int m,int n){
        if (m == 1 || n == 1)
            return 1;
        return uniquePaths(m-1,n)+uniquePaths(m,n-1);
    }

    一般这种递归都可以使用动态规划来解决

    class Solution{
    public:
        int uniquePaths(int m,int n){
            if (m < 1 || n < 1)
                return 0;
            vector<int> v(n,1);
            for (int i = 1; i < m ; i++)
                for (int j = 1; j < n;j++){
                    v[j] += v[j-1];
                }
            return v[n-1];
        }
    };

    Unique Path II

    https://leetcode.com/problems/unique-paths-ii/

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    开始想直接使用I中的,却没有考虑到边界上有障碍的情况

    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid){
                if (obstacleGrid.empty())
                    return 0;
                int m = obstacleGrid.size();
                int n = obstacleGrid[0].size();
                if (m < 1 || n < 1)
                    return 0;
                vector<int> result(n);
                result[0] = 1;
                for (int i = 0 ; i < m ; i++){
                    for (int j = 0 ; j < n ; j++){
                        if (obstacleGrid[i][j] == 1)
                            result[j] = 0;
                        else{
                            if (j > 0)
                                result[j] += result[j-1];
                        }
                    }
                }
                return result[n-1];
            }

     Minimun-Path-Sum

    Title:

    https://leetcode.com/problems/minimum-path-sum/

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    Note: You can only move either down or right at any point in time.

    思路:同样的动态规划

    class Solution{
    public:
        int minPathSum(vector<vector<int> > &grid){
            if (grid.empty() || grid.size() == 0)
                return 0;
            int m = grid.size();
            int n = grid[0].size();
            vector<int> v(n,INT_MAX);
            v[0] = 0;
            for (int i = 0; i < m; i++){
                for (int j = 0; j < n; j++){
                    if (j == 0){
                        v[j] = v[j] + grid[i][j];
                    }else{
                        v[j] = min(v[j],v[j-1]) + grid[i][j];
                    }
                    //cout<<v[j]<<" ";
                }
                //cout<<endl;
            }
            //cout<<endl;
            return v[n-1];
        }
    };
  • 相关阅读:
    【原创】【JNI】OPUS压缩与解压的JNI调用(.DLL版本)
    线性基学习笔记
    杜教筛&Min_25筛学习笔记
    LOJ2540 随机算法
    仙人掌&圆方树学习笔记
    CF487E Tourists
    BZOJ2125 最短路
    [SHOI2008]仙人掌图
    BZOJ4316 小C的独立集
    NOI2015 品酒大会
  • 原文地址:https://www.cnblogs.com/yxzfscg/p/4468344.html
Copyright © 2020-2023  润新知