Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity?
(Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路分析:基本思路是用两个数组left和right,left保存从最左側到当前数之前的全部数字的乘积。right保存从最右側到当前之后的全部数字的乘积。然后,结果数组就是把这两个数组相应位置相乘就可以。假设想仅仅是用O(1)的space。就须要复用输入和输出数组的空间。基本思路是。先计算right数组,利用result数组的空间保存,然后计算left数组。仅仅须要一个变量left保存当前从最左側到当前数字之前的全部数字之和。
总之,使用好输入输出数组的空间,避免使用很多其它space。下面凝视部分code给出了O(n) 空间复杂度的解法,非凝视部分给出了O(1)空间复杂度的解法。
时间复杂度就是O(n)。
AC Code:
public class Solution { public int[] productExceptSelf(int[] nums) { /*int len = nums.length; int [] res = new int[len]; if(len < 2) return res; int [] left = new int[len]; int [] right = new int[len]; left[0] = 1; right[len - 1] = 1; for(int i = len - 1; i > 0; i--){ right[i - 1] = right[i] * nums[i]; } for(int i = 0; i < len - 1; i++){ left[i + 1] = left[i] * nums[i]; } for(int i = 0; i < len; i++){ res[i] = left[i] * right[i]; } return res;*/ int len = nums.length; int [] res = new int[len]; if(len < 2) return res; res[len - 1] = 1; for(int i = len - 1; i > 0; i--){ res[i - 1] = res[i] * nums[i]; } int left = 1; for(int i = 0; i < len; i++){ res[i] *= left; left = left * nums[i]; } return res; } }