• Spark应用程序-任务的调度


    任务的调度

    ​ 关于任务的调度逻辑依然在submitMissingTasks方法中,在任务的划分之后,会生成一个任务的任务的集合,即:

    val tasks: Seq[Task[_]]
    

    ​ 该集合中包含的正是当前阶段中所有的任务。任务划分之后,程序会继续向下执行:

    if (tasks.nonEmpty) {
      logInfo(s"Submitting ${tasks.size} missing tasks from $stage (${stage.rdd}) (first 15 " +
        s"tasks are for partitions ${tasks.take(15).map(_.partitionId)})")
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))
    } else {
     	……
    }
    

    ​ 如果任务集合不为空,那么会通过一个任务调度器进行任务的提交,提交执行会将任务集合进行包装生成一个TaskSet。最终提交的是一个TaskSet,继续查看submitTasks源码,直接点进去是一个特质TaskScheduler,查看真正的执行源码,还是要到它的具体实现类TaskSchedulerImpl中查看:

    override def submitTasks(taskSet: TaskSet): Unit = {
      val tasks = taskSet.tasks
      logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
      this.synchronized {
        val manager = createTaskSetManager(taskSet, maxTaskFailures)
          ……
    

    ​ 此处有一个createTaskSetManager方法,用于创建taskSet管理器,查看它的源码:

    private[scheduler] def createTaskSetManager(
        taskSet: TaskSet,
        maxTaskFailures: Int): TaskSetManager = {
      new TaskSetManager(this, taskSet, maxTaskFailures, blacklistTrackerOpt)
    }
    

    ​ 该方法又将TaskSet进行了包装,生成了TaskSetManager对象进行返回。所以manager是一个TaskSetManager对象。

    ​ 继续向下查看TaskSchedulerImpl类中的submitTasks方法的源码:

    stageTaskSets(taskSet.stageAttemptId) = manager
    schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
    

    ​ 此处有一个调度构建器,用于将manager对象添加进去。它的声明是:

    private var schedulableBuilder: SchedulableBuilder = null
    

    ​ 继续查看它的赋值:

    def initialize(backend: SchedulerBackend): Unit = {
      this.backend = backend
      schedulableBuilder = {
        schedulingMode match {
          case SchedulingMode.FIFO =>
            new FIFOSchedulableBuilder(rootPool)
          case SchedulingMode.FAIR =>
            new FairSchedulableBuilder(rootPool, conf)
          case _ =>
            throw new IllegalArgumentException(s"Unsupported $SCHEDULER_MODE_PROPERTY: " +
            s"$schedulingMode")
        }
      }
      schedulableBuilder.buildPools()
    }
    

    ​ 可以看出一共有两种调度器模式,一种是先进先出FIFO,一种是公平调度器模式,会根据不同的调度器模式,创建不同的调度器对象赋值给schedulableBuilder。而在默认情况下,调度器模式是FIFO,也就是先进先出的模式。

    // default scheduler is FIFO
    private val schedulingModeConf = conf.get(SCHEDULER_MODE)
    val schedulingMode: SchedulingMode =
      try {
            SchedulingMode.withName(schedulingModeConf.toUpperCase(Locale.ROOT))
      } catch {
        case e: java.util.NoSuchElementException =>
          throw new SparkException(s"Unrecognized $SCHEDULER_MODE_PROPERTY: $schedulingModeConf")
      }
    

    ​ 继续查看schedulableBuilder.addTaskSetManager(manager,manager.taskSet.properties)的源码:

    override def addTaskSetManager(manager: Schedulable, properties: Properties): Unit = {
      rootPool.addSchedulable(manager)
    }
    

    ​ rootPool是一个任务池,该方法将manager放入了任务池中。这整个过程就是将划分出的任务进行一系列的包装,然后放入一个任务池中,那么什么时候取出来执行呢?继续向下观看submitTasks的源码,在方法内部的最后一行有一段代码:

    backend.reviveOffers()
    

    ​ 进一步观察它的内部逻辑:

    override def reviveOffers(): Unit = {
      driverEndpoint.send(ReviveOffers)
    }
    

    ​ 进行了发送消息的操作,作用是告知消息接收方要取出任务。makeOffers就是具体的操作:

          case ReviveOffers =>
            makeOffers()
    
    private def makeOffers(): Unit = {
      // Make sure no executor is killed while some task is launching on it
      val taskDescs = withLock {
        // Filter out executors under killing
        val activeExecutors = executorDataMap.filterKeys(isExecutorActive)
        val workOffers = activeExecutors.map {
          case (id, executorData) =>
            new WorkerOffer(id, executorData.executorHost, executorData.freeCores,
              Some(executorData.executorAddress.hostPort),
              executorData.resourcesInfo.map { case (rName, rInfo) =>
                (rName, rInfo.availableAddrs.toBuffer)
              })
        }.toIndexedSeq
        scheduler.resourceOffers(workOffers)
      }
      if (taskDescs.nonEmpty) {
        launchTasks(taskDescs)
      }
    }
    

    ​ 先生成对任务的描述,然后如果任务不为空,那么就启动任务。但是具体取出任务的过程是scheduler.resourceOffers(workOffers)这行代码完成的,首先查看一下该方法的注释介绍:

    /**
     * Called by cluster manager to offer resources on slaves. We respond by asking our active task
     * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
     * that tasks are balanced across the cluster.
     */
    

    ​ 大致意思是,该方法是由集群管理器调用,用于给从属服务器提供资源。以轮循的方式为每个节点分发任务,以便在整个集群中平衡任务数量。但是它在具体的细节上会有优先级的差异,查看源码可以知道:

    def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    		……			
      val sortedTaskSets = rootPool.getSortedTaskSetQueue.filterNot(_.isZombie)
      for (taskSet <- sortedTaskSets) {
        logDebug("parentName: %s, name: %s, runningTasks: %s".format(
          taskSet.parent.name, taskSet.name, taskSet.runningTasks))
        if (newExecAvail) {
          taskSet.executorAdded()
        }
        ……
    

    ​ getSortedTaskSetQueue方法在底层对任务池中的manager进行了调度算法的处理:

    override def getSortedTaskSetQueue: ArrayBuffer[TaskSetManager] = {
      val sortedTaskSetQueue = new ArrayBuffer[TaskSetManager]
      val sortedSchedulableQueue =
        schedulableQueue.asScala.toSeq.sortWith(taskSetSchedulingAlgorithm.comparator)
      for (schedulable <- sortedSchedulableQueue) {
        sortedTaskSetQueue ++= schedulable.getSortedTaskSetQueue
      }
      sortedTaskSetQueue
    }
    

    ​ taskSetSchedulingAlgorithm就是具体的调度算法:

    private val taskSetSchedulingAlgorithm: SchedulingAlgorithm = {
      schedulingMode match {
        case SchedulingMode.FAIR =>
          new FairSchedulingAlgorithm()
        case SchedulingMode.FIFO =>
          new FIFOSchedulingAlgorithm()
        case _ =>
          val msg = s"Unsupported scheduling mode: $schedulingMode. Use FAIR or FIFO instead."
          throw new IllegalArgumentException(msg)
      }
    }
    

    ​ 不同的调度模式就使用不同的调度算法。这些算法本质就是对manager进行调度,看看哪些manager先执行,哪些后执行。

    ​ 经过调度算法的处理之后,返回一个TaskSetManager集合,然后会对这个集合进行轮循。在轮循的过程中,会涉及到一个重要的概念,也就是本地化级别:

    for (taskSet <- sortedTaskSets) {
    		……
        val addressesWithDescs = ArrayBuffer[(String, TaskDescription)]()
        for (currentMaxLocality <- taskSet.myLocalityLevels) {	
    		……
        }
        ……
    }
    

    ​ 那么什么是本地化级别呢?通过一个案例来进行解释:

    ​ 假设一个应用程序,有一个Driver和两个Executor,如果Driver中有一个Task,那么这个Task到底发给哪个Executor,这就涉及到一个首选位置的概念,也就是说Task作为计算,那么首选发送的位置应该发给数据所处的Executor位置,这是比较理想的情况。但是这个Task未必会发送到数据所在的Executor节点。所以Task和Data的位置就存在不同的级别,这个级别称之为本地化级别。级别有以下几种:

    ​ (1)进程本地化:数据和计算在同一个进程中(最高级别,效率最高)

    ​ (2)节点本地化:数据和计算在同一个节点中

    ​ (3)机架本地化:数据和计算在同一个架构中

    ​ (4)任意:数据和计算的位置任意

    ​ 所以上面的代码会判断taskSet的级别,看看它应该发给哪个地方,然后进行关联。最终返回任务。

    ​ Spark中任务调度时,TaskScheduler在分发之前需要依据数据的位置来分发,最好将task分发到数据所在的节点上,如果TaskScheduler分发的task在默认3s依然无法执行的话,TaskScheduler会重新发送这个task到相同的Executor中去执行,会重试5次,如果依然无法执行,那么TaskScheduler会降低一级数据本地化的级别再次发送task。

    ​ 如上图中,会先尝试1,PROCESS_LOCAL数据本地化级别,如果重试5次每次等待3s,会默认这个Executor计算资源满了,那么会降低一级数据本地化级别到2,NODE_LOCAL,如果还是重试5次每次等待3s还是失败,那么还是会降低一级数据本地化级别到3,RACK_LOCAL。这样数据就会有网络传输,降低了执行效率。

    ​ 最后启动任务:

          if (taskDescs.nonEmpty) {
            launchTasks(taskDescs)
          }
    
    private def launchTasks(tasks: Seq[Seq[TaskDescription]]): Unit = {
      for (task <- tasks.flatten) {
        val serializedTask = TaskDescription.encode(task)
        //判断序列化的任务数量有没有超过限制  
        if (serializedTask.limit() >= maxRpcMessageSize) {
    		……
    	else{
            ……
          executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
        }
      }
    }
    

    ​ 取出所有的任务,进行遍历,判断序列化的任务数量是否超过限制,如果没有那么就会找到对应Executor终端,给它发启动Task的消息。所以最后一行的代码的任务就是从任务池中取出任务,然后进行序列化发送给远程的某个executor执行,而这个executor可以根据上面的本地化级别选出来。

    参考文献:https://www.cnblogs.com/eric666666/p/11301266.html

  • 相关阅读:
    Educational Codeforces Round 51 (Rated for Div. 2)
    Kruskal重构树入门
    编译原理词法分析
    java.lang.String内部结构的变化
    android 世界各国英文简写代码 资源文件
    openCV python 安装
    解读30个提高Web程序执行效率的好经验
    从认知盈余说起,也谈分享精神
    STL set multiset map multimap unordered_set unordered_map example
    [置顶] 【Git入门之一】Git是神马?
  • 原文地址:https://www.cnblogs.com/yxym2016/p/14254577.html
Copyright © 2020-2023  润新知