• hdu 5187 高速幂高速乘法


    http://acm.hdu.edu.cn/showproblem.php?pid=5187

    Problem Description
    As one of the most powerful brushes, zhx is required to give his juniors n problems.
    zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful way.
    zhx defines a sequence {ai} beautiful if there is an i that matches two rules below:
    1: a1..ai are monotone decreasing or monotone increasing.
    2: ai..an are monotone decreasing or monotone increasing.
    He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
    zhx knows that the answer may be very huge, and you only need to tell him the answer module p.
     

    Input
    Multiply test cases(less than 1000). Seek EOF as the end of the file.
    For each case, there are two integers n and p separated by a space in a line. (1n,p1018)
     

    Output
    For each test case, output a single line indicating the answer.
     

    Sample Input
    2 233 3 5
     

    Sample Output
    2 1
    Hint
    In the first case, both sequence {1, 2} and {2, 1} are legal. In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1
    /**
    hdu 5187  高速幂高速乘法
    题目大意:(转)数字1~n,按某种顺序排列。且满足下列某一个条件:(1)a1~ai递增,ai~an递减(2)a1~ai递减,ai~an递增。
          问有多少种不同的排列。
    解题思路:首先是所有递减或所有递增各一种;另外就是满足上列两个条件的情况了。要想满足条件(1)那就仅仅能把最大的n放在i位置,
           共同拥有C(1,n-1)+C(2。n-1)+。。。

    +C(n-2,n-1)即2^(n-1)-2;条件(2)与(1)同样,所以共同拥有(2^(n-1)-2)*2+2=2^n-2. **/ #include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; typedef long long LL; LL n,p; LL qui_mul(LL x,LL m)///高速乘法 { LL re=0; while(m) { if(m&1) { re=(re+x)%p; } x=(x+x)%p; m>>=1; } return re; } LL qui_pow(LL a,LL n)///高速幂 { LL ret=1; LL tem=a%p; while(n) { if(n%1)ret=qui_mul(ret,temp)%p; temp=qui_mul(temp,temp)%p; n>>=1; } return ret; } int main() { while(~scanf("%I64d%I64d",&n,&p)) { if(n==1) { if(p==1) printf("0 "); else printf("1 "); } printf("%I64d ",(qui_mul(2,n)-2)%p); } return 0; }



  • 相关阅读:
    python字典推导式
    什么是Python 自省
    类变量和实例变量
    Python 使用正则表达式匹配URL网址
    python is 和 “==”的区别
    阮一峰老师的bash教程,建议阅读
    python里的闭包
    什么是生成器
    python访问限制
    pytorch使用Tips
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5066826.html
Copyright © 2020-2023  润新知