回溯法
百度百科:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步又一次选择,这样的走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
做完以下几题,应该会对回溯法的掌握有非常大帮助
N-Queens http://oj.leetcode.com/problems/n-queens/
N-Queens II http://oj.leetcode.com/problems/n-queens-ii/
Generate Parentheses http://oj.leetcode.com/problems/generate-parentheses/
N-Queens
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
经典的八皇后问题的扩展,利用回溯法,
(1)从第一列開始试探性放入一枚皇后
(2)推断放入后棋盘是否安全,调用checkSafe()推断
(3)若checkSafe()返回true,继续放下一列,若返回false,回溯到上一列,又一次寻找安全位置
(4)遍历全然部位置,得到结果
class Solution { public: vector<vector<string> > solveNQueens(int n) { int *posArray = new int[n]; int count = 0; vector< vector<string> > ret; placeQueue(0, n, count, posArray, ret); return ret; } //检查棋盘安全性 bool checkSafe(int row, int *posArray){ for(int i=0; i < row; ++i){ int diff = abs(posArray[i] - posArray[row]); if (diff == 0 || diff == row - i) { return false; } } return true; } //放置皇后 void placeQueue(int row, int n, int &count, int *posArray, vector< vector<string> > &ret){ if(n == row){ count++; vector<string> tmpRet; for(int i = 0; i < row; i++){ string str(n, '.'); str[posArray[i]] = 'Q'; tmpRet.push_back(str); } ret.push_back(tmpRet); return; } //从第一列開始试探 for(int col=0; col<n; ++col){ posArray[row] = col; if(checkSafe(row, posArray)){ //若安全,放置下一个皇后 placeQueue(row+1, n, count, posArray, ret); } } } };
N-Queens II
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
仅仅需计算个数count即可,略微改动
class Solution { public: int totalNQueens(int n) { int *posArray = new int[n]; int count = 0; vector< vector<string> > ret; placeQueue(0, n, count, posArray, ret); return count; } //检查棋盘安全性 bool checkSafe(int row, int *posArray){ for(int i=0; i < row; ++i){ int diff = abs(posArray[i] - posArray[row]); if (diff == 0 || diff == row - i) { return false; } } return true; } //放置皇后 void placeQueue(int row, int n, int &count, int *posArray, vector< vector<string> > &ret){ if(n == row){ count++; return; } //从第一列開始试探 for(int col=0; col<n; ++col){ posArray[row] = col; if(checkSafe(row, posArray)){ //若安全,放置下一个皇后 placeQueue(row+1, n, count, posArray, ret); } } } };
Generate Parentheses
刚做完N-QUEUE问题,受之影响,此问题也使用回溯法解决,代码看上去多了非常多
class Solution { public: vector<string> generateParenthesis(int n) { vector<string> vec; int count = 0; int *colArr = new int[2*n]; generate(2*n, count, 0, colArr, vec); delete[] colArr; return vec; } //放置括弧 void generate(int n,int &count, int col, int *colArr, vector<string> &vec){ if(col == n){ ++count; string temp(n,'('); for(int i = 0;i< n;++i){ if(colArr[i] == 1) temp[i] = ')'; } vec.push_back(temp); return; } for(int i=0; i<2;++i){ colArr[col] = i; if(checkSafe(col, colArr, n)){ //放置下一个括弧 generate(n, count, col+1, colArr, vec); } } } //检查安全性 bool checkSafe(int col, int *colArr, int n){ int total = n/2; if(colArr[0] == 1) return false; int left = 0, right = 0; for(int i = 0; i<=col; ++i){ if(colArr[i] == 0 ) ++left; else ++right; } if(right > left || left > total || right > total) return false; else return true; } };
google了下,http://blog.csdn.net/pickless/article/details/9141935 代码简洁非常多,供參考
class Solution { public: vector<string> generateParenthesis(int n) { // Start typing your C/C++ solution below // DO NOT write int main() function vector<string> ans; getAns(n, 0, 0, "", ans); return ans; } private: void getAns(int n, int pos, int neg, string temp, vector<string> &ans) { if (pos < neg) { return; } if (pos + neg == 2 * n) { if (pos == neg) { ans.push_back(temp); } return; } getAns(n, pos + 1, neg, temp + '(', ans); getAns(n, pos, neg + 1, temp + ')', ans); } };