时间同步
服务端 内网主机
yum install ntpdate ntp -y
systemctl start ntpdate
systemctl start ntpd
客户端同步内网主机时间
yum install ntpdate
ntpdate 192.168.0.123
18 Sep 09:17:38 ntpdate[9284]: step time server 192.168.0.123 offset -682.947247 sec
解压rar包
wget http://www.rarsoft.com/rar/rarlinux-x64-5.4.0.tar.gz
tar -xvf rarlinux-x64-5.4.0.tar.gz
cd rar
make
看见下面这些信息就是安装成功了
mkdir -p /usr/local/bin
mkdir -p /usr/local/lib
cp rar unrar /usr/local/bin
cp rarfiles.lst /etc
cp default.sfx /usr/local/lib
解压rar包
rar x tianyiyun.rar
ES配置内存大小
不要超过32G
Elasticsearch默认安装后设置的内存是1GB,对于任何一个业务部署来说,这个都太小了。如果你正在使用这些默认堆内存配置,你的集群配置可能有点问题
这里有另外一个原因不分配大内存给Elasticsearch,事实上jvm在内存小于32G的时候会采用一个内存对象指针压缩技术。
在java中,所有的对象都分配在堆上,然后有一个指针引用它。指向这些对象的指针大小通常是CPU的字长的大小,不是32bit就是64bit,这取决于你的处理器,指针指向了你的值的精确位置。
对于32位系统,你的内存最大可使用4G。对于64系统可以使用更大的内存。但是64位的指针意味着更大的浪费,因为你的指针本身大了。浪费内存不算,更糟糕的是,更大的指针在主内存和缓存器(例如LLC, L1等)之间移动数据的时候,会占用更多的带宽。
java 使用一个叫内存指针压缩的技术来解决这个问题。它的指针不再表示对象在内存中的精确位置,而是表示偏移量。这意味着32位的指针可以引用40亿个对象,而不是40亿个字节。最终,也就是说堆内存长到32G的物理内存,也可以用32bit的指针表示。
一旦你越过那个神奇的30-32G的边界,指针就会切回普通对象的指针,每个对象的指针都变长了,就会使用更多的CPU内存带宽,也就是说你实际上失去了更多的内存,事实上当内存到达40-50GB的时候,有效内存才相当于使用内存对象指针压缩技术时候的32G内存
这段描述的意思就是说:即便你有足够的内存,也尽量不要超过32G,因为它浪费了内存,降低了CPU的性能,还要让GC应对大内存
Ansible过滤特定组的主机
Flink Jobmanager(Master HA)高可用
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ #============================================================================== # Common #============================================================================== # The external address of the host on which the JobManager runs and can be # reached by the TaskManagers and any clients which want to connect. This setting # is only used in Standalone mode and may be overwritten on the JobManager side # by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable. # In high availability mode, if you use the bin/start-cluster.sh script and setup # the conf/masters file, this will be taken care of automatically. Yarn/Mesos # automatically configure the host name based on the hostname of the node where the # JobManager runs. jobmanager.rpc.address: 192.168.0.195 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123 #taskmanager.memory.jvm-metaspace.size: 1024m # The total process memory size for the JobManager. # # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead. #jobmanager.memory.process.size: 1600m jobmanager.memory.process.size: 4096m jobmanager.memory.jvm-metaspace.size: 2048m # The total process memory size for the TaskManager. # # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead. taskmanager.memory.task.heap.size: 2048m taskmanager.memory.managed.size: 1024m taskmanager.memory.framework.off-heap.size: 2048m taskmanager.memory.jvm-metaspace.size: 2048m #taskmanager.memory.process.size: 1728m # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'. # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory. # # taskmanager.memory.flink.size: 1280m # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline. taskmanager.numberOfTaskSlots: 300 # The parallelism used for programs that did not specify and other parallelism. parallelism.default: 1 # The default file system scheme and authority. # # By default file paths without scheme are interpreted relative to the local # root file system 'file:///'. Use this to override the default and interpret # relative paths relative to a different file system, # for example 'hdfs://mynamenode:12345' # # fs.default-scheme #============================================================================== # High Availability #============================================================================== # The high-availability mode. Possible options are 'NONE' or 'zookeeper'. # high-availability: zookeeper # The path where metadata for master recovery is persisted. While ZooKeeper stores # the small ground truth for checkpoint and leader election, this location stores # the larger objects, like persisted dataflow graphs. # # Must be a durable file system that is accessible from all nodes # (like HDFS, S3, Ceph, nfs, ...) # high-availability.storageDir: /data/tianyiyun/nfsdata/flink/flink-ha/ # The list of ZooKeeper quorum peers that coordinate the high-availability # setup. This must be a list of the form: # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181) # high-availability.zookeeper.quorum: 192.168.0.232:32181,192.168.0.125:32181,192.168.0.40:32181/flinkha # ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes # It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE) # The default value is "open" and it can be changed to "creator" if ZK security is enabled # # high-availability.zookeeper.client.acl: open #============================================================================== # Fault tolerance and checkpointing #============================================================================== # The backend that will be used to store operator state checkpoints if # checkpointing is enabled. # # Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the # <class-name-of-factory>. # # state.backend: filesystem # Directory for checkpoints filesystem, when using any of the default bundled # state backends. # # state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints # Default target directory for savepoints, optional. # # state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints # Flag to enable/disable incremental checkpoints for backends that # support incremental checkpoints (like the RocksDB state backend). # # state.backend.incremental: false state.checkpoints.num-retained: 2 # The failover strategy, i.e., how the job computation recovers from task failures. # Only restart tasks that may have been affected by the task failure, which typically includes # downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption. jobmanager.execution.failover-strategy: region #============================================================================== # Rest & web frontend #============================================================================== # The port to which the REST client connects to. If rest.bind-port has # not been specified, then the server will bind to this port as well. # #rest.port: 8081 # The address to which the REST client will connect to # #rest.address: 0.0.0.0 # Port range for the REST and web server to bind to. # #rest.bind-port: 8080-8090 # The address that the REST & web server binds to # #rest.bind-address: 0.0.0.0 rest.bind-address: 0.0.0.0 # Flag to specify whether job submission is enabled from the web-based # runtime monitor. Uncomment to disable. #web.submit.enable: false #============================================================================== # Advanced #============================================================================== # Override the directories for temporary files. If not specified, the # system-specific Java temporary directory (java.io.tmpdir property) is taken. # # For framework setups on Yarn or Mesos, Flink will automatically pick up the # containers' temp directories without any need for configuration. # # Add a delimited list for multiple directories, using the system directory # delimiter (colon ':' on unix) or a comma, e.g.: # /data1/tmp:/data2/tmp:/data3/tmp # # Note: Each directory entry is read from and written to by a different I/O # thread. You can include the same directory multiple times in order to create # multiple I/O threads against that directory. This is for example relevant for # high-throughput RAIDs. # # io.tmp.dirs: /tmp io.tmp.dirs: /data/tianyiyun/nfsdata/flink/flink-temp # The classloading resolve order. Possible values are 'child-first' (Flink's default) # and 'parent-first' (Java's default). # # Child first classloading allows users to use different dependency/library # versions in their application than those in the classpath. Switching back # to 'parent-first' may help with debugging dependency issues. # # classloader.resolve-order: child-first # The amount of memory going to the network stack. These numbers usually need # no tuning. Adjusting them may be necessary in case of an "Insufficient number # of network buffers" error. The default min is 64MB, the default max is 1GB. # #taskmanager.memory.network.fraction: 0.1 #taskmanager.memory.network.min: 64mb #taskmanager.memory.network.max: 1gb #============================================================================== # Flink Cluster Security Configuration #============================================================================== # Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors - # may be enabled in four steps: # 1. configure the local krb5.conf file # 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit) # 3. make the credentials available to various JAAS login contexts # 4. configure the connector to use JAAS/SASL # The below configure how Kerberos credentials are provided. A keytab will be used instead of # a ticket cache if the keytab path and principal are set. # security.kerberos.login.use-ticket-cache: true # security.kerberos.login.keytab: /path/to/kerberos/keytab # security.kerberos.login.principal: flink-user # The configuration below defines which JAAS login contexts # security.kerberos.login.contexts: Client,KafkaClient #============================================================================== # ZK Security Configuration #============================================================================== # Below configurations are applicable if ZK ensemble is configured for security # Override below configuration to provide custom ZK service name if configured # zookeeper.sasl.service-name: zookeeper # The configuration below must match one of the values set in "security.kerberos.login.contexts" # zookeeper.sasl.login-context-name: Client #============================================================================== # HistoryServer #============================================================================== # The HistoryServer is started and stopped via bin/historyserver.sh (start|stop) # Directory to upload completed jobs to. Add this directory to the list of # monitored directories of the HistoryServer as well (see below). jobmanager.archive.fs.dir: file:///data/tianyiyun/nfsdata/flink/flink-history # The address under which the web-based HistoryServer listens. #historyserver.web.address: 0.0.0.0 # The port under which the web-based HistoryServer listens. historyserver.web.port: 8882 # Comma separated list of directories to monitor for completed jobs. historyserver.archive.fs.dir: file:///data/tianyiyun/nfsdata/flink/flink-history # Interval in milliseconds for refreshing the monitored directories. #historyserver.archive.fs.refresh-interval: 10000 env.java.home: /usr/lib/java/jdk1.8.0_191 web.upload.dir: /data/tianyiyun/nfsdata/flink/flink-web-jar metrics.reporters: prom metrics.reporter.prom.class: org.apache.flink.metrics.prometheus.PrometheusReporter metrics.reporter.prom.port: 9213-9214
192.168.0.195:8081 192.168.0.170:8081
192.168.0.75 192.168.0.7
flink 集群重启宕机服务
jobmanager.sh start cluster jobmanager-01
zk常用命令
#1.连接zk命令
[root@raid2t shell]
# zkCli.sh -server localhost:2181
#2.创建zk节点
[zk: localhost:2181(CONNECTED) 1] create
/master
myData
#3. 获取master节点数据
[zk: localhost:2181(CONNECTED) 1] get
/master
#4. 给master节点赋值data123456
[zk: localhost:2181(CONNECTED) 1]
set
/master
data123456
#5. 删除master节点
[zk: localhost:2181(CONNECTED) 1] delete
/master deleteall /master 删除非空节点