• POJ1328 -- Radar Installation


    Radar Installation
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 96747   Accepted: 21508

    Description

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
     
    Figure A Sample Input of Radar Installations


    Input

    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

    The input is terminated by a line containing pair of zeros 

    Output

    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

    Sample Input

    3 2
    1 2
    -3 1
    2 1
    
    1 2
    0 2
    
    0 0
    

    Sample Output

    Case 1: 2
    Case 2: 1
    

    Source

     

    题意分析
    给定一个直角坐标系,定义x轴为海岸线,海岸线上方是海,下方是陆地.
    在海域零星分布一些海岛, 需要要在海岸线上安装若干个雷达覆盖这些海岛,
    每个雷达的覆盖半径都是相同且固定的.

    现在给定所有海岛的坐标(x,y), 以及雷达的覆盖半径d,
    问可以覆盖所有海岛的最小雷达数.


    解题思路:

    无解的情况:

      y>d或者是y<0或是d<0

    有解的情况:

    以海岛坐标(x,y)为圆心,用雷达覆盖半径d画圆,根据前提条件可知,
    这个圆与x轴必定存在最少1个(y=d)、最多2个交点(y<d).

    可以认为1个交点是2个交点重合的特殊情况,那么这2个交点在x轴上构成的线性区间,
    可以看作海岛的被覆盖范围在x轴上的投影 (由此就可以把二维的几何问题转化成一维几何问题)

    按照所有海岛的x轴坐标,从小到大依次计算每个海岛在x轴上的投影区间(投影可能存在重叠),
    同时把每个雷达抽象成1个点,那么此问题就转化成:

    【已知x轴上若干个区间(可能存在交集),现在要往这些区间内放若干个点,
    问怎样放置这些点,使得每个区间内至少存在一个点,且所放置的点的总量尽可能最少】


    可使用贪心算法求解:
    根据每个区间的左端点坐标对所有区间从左到右排序:
    ① 在左起第一个区间A 的右端点 A.R 放置一个点,总放置点数 P+1
    ② 若下一个区间B 的左端点 B.L > A.R,
    说明 区间A 与 区间B 无交集,此时在区间B 的右端点 B.R 放置一个点,总放置点数 P+1

    否则说明 区间A 与 区间B 相交, 此时进一步判断,若 B.R < A.R,
    说明 区间B 在 区间A 的内部,此时把原本放置在 A.R 的点移动到 B.R(确保区间B有一个点),总放置点数不变

    ③ 重复这个过程直到所有区间被遍历完成

    测试样例:
    3 2
    1 0
    -3 -1
    2 1
    
    2 2
    1 1
    2 2
    
    5 4
    -2 2
    1 2
    0 3
    3 3
    4 3
    
    9 3
    0 2
    -3 2
    -4 2
    -5 2
    3 2
    6 2
    9 2
    12 2
    15 2
    
    3 2
    1 2
    -3 1
    2 1
    
    1 2
    0 2
    
    0 0
     1 #include<iostream>
     2 #include<math.h>
     3 #include<algorithm>
     4 using namespace std;
     5 struct seaside{
     6     double left;
     7     double right;
     8 };
     9 bool compare(seaside a,seaside b)
    10 {
    11     return a.left<=b.left;
    12 }
    13 int solve(seaside *a,int n)
    14 {
    15     ///进行排序
    16     sort(a,a+n,compare);
    17     double fright;
    18     fright = a[0].right;
    19     int sum = 1;
    20     for(int i=1;i<n;i++)
    21     {
    22         if(a[i].left > fright)
    23         {
    24             sum++;
    25             fright = a[i].right;
    26         }else{
    27             if(a[i].right < fright)
    28             {
    29                 fright = a[i].right;
    30             }
    31         }
    32     }
    33     return sum;
    34 }
    35 int main()
    36 {
    37     int n;
    38     double d;
    39     int Count = 1;
    40     bool isSolved = 1;
    41     cin>>n>>d;
    42     while(n!=0)
    43     {
    44         isSolved = 1;
    45         seaside *island = new seaside[n];
    46         double x,y;
    47         for(int i=0;i<n;i++)
    48         {
    49             cin>>x>>y;
    50             if(y>d || y<0 || d<0)//无解
    51                 isSolved = 0;
    52             else{
    53                 double offset = sqrt(d*d - y*y);   // 勾股定理
    54                 island[i].left = x-offset;
    55                 island[i].right = x+offset;
    56             }
    57 
    58         }
    59 
    60         ///解决问题
    61         cout<<"Case "<<Count<<": ";
    62         if(isSolved)
    63             cout<<solve(island,n)<<endl;
    64         else
    65             cout<<-1<<endl;
    66 
    67         delete[] island;
    68         Count++;
    69         cin>>n>>d;
    70     }
    71     return 0;
    72 }
    结果:
    3 2
    1 0
    -3 -1
    2 1
    Case 1: -1
    
    2 2
    1 1
    2 2
    Case 2: 1
    
    5 4
    -2 2
    1 2
    0 3
    3 3
    4 3
    Case 3: 1
    
    9 3
    0 2
    -3 2
    -4 2
    -5 2
    3 2
    6 2
    9 2
    12 2
    15 2
    Case 4: 4
    
    3 2
    1 2
    -3 1
    2 1
    Case 5: 2
    
    1 2
    0 2
    Case 6: 1
    
    0 0
    
    Process returned 0 (0x0)   execution time : 1.058 s
    Press any key to continue.
  • 相关阅读:
    Oracle中Blob转换成Clob
    【转】解决PowerDesigner 反向工程没有注释(备注)(SQL Server2008)+ Sql导入powerdesigner时中文丢失问题(Oracle11g)
    中国大陆开源镜像站汇(好东西大家一起用)
    【转】 CSS样式丢失总结
    .net程序错误:BadImageFormatException....如果在安装32位Oracle客户端组件的情况下以64位模式运行
    [转]程序员常用不常见很难得的地址大全,转来自己用
    【转】(C#)用MyXls生成Excel报表
    C# 生成Excel 并保存 包含web和winform调用方法
    ThinkPHP运算符与PHP运算符对照表
    ThinkPHP常用配置路径
  • 原文地址:https://www.cnblogs.com/yxh-amysear/p/8409806.html
Copyright © 2020-2023  润新知