• 【XSY2721】求和 杜教筛


    题目描述

      设(n=prod a_i^{p_i}),那么定义(f_d(n)=prod{(-1)^{p_i}[p_ileq d]})。特别的,(f_1(n)=mu(n))

      给你(n,k),求

    [sum_{i=1}^nsum_{j=1}^nsum_{d=1}^kf_d(gcd(i,j)) ]

      (nleq {10}^{10},kleq 40)

    题解

      先做一些简单的处理

    [egin{align} ans&=sum_{i=1}^nsum_{j=1}^nsum_{d=1}^kf_d(gcd(i,j))\ &=sum_{i=1}^nsum_{d=1}^kf_d(i)(2(sum_{j=1}^{lfloorfrac{n}{i} floor}varphi(j))-1) end{align} ]

      后面(varphi)用杜教筛可以在(O(n^frac{2}{3}))内搞出来。

      设(lambda(n)=f_infty(n)=prod{(-1)}^{p_i})

      考虑容斥,有:

    [f_d(n)=lambda(n)sum_{i^d|n}mu(i) ]

    [egin{align} F_d(n)&=sum_{i=1}^nf_d(i)\ &=sum_{i=1}^nlambda(i)sum_{j^d|i}mu(j)\ &=sum_{i=1}^nmu(i)sum_{j=1}^{lfloorfrac{n}{i^{d+1}} floor}lambda(i^{d+1}j)\ &=sum_{i=1}^{lfloorsqrt[d+1]{n} floor}lambda^{d+1}(i)mu(i)Lambda(lfloorfrac{n}{i^{d+1}} floor) end{align} ]

      (nleq {10}^7)的部分预处理,其他的每次枚举。这部分每次枚举是(sqrt{n})的。总的是(O(n^frac{2}{3}))的。(和杜教筛的分析方法一样。)

    [egin{align} sum_{j|i}lambda(j)&=[i是完全平方数]\ sum_{i=1}^nsum_{j|i}lambda(j)&=sqrt{n}\ sqrt{n}=sum_{i=1}^nsum_{j}[j|i]lambda(i)&=sum_{frac{i}{j}=1}^nsum_{j=1}^{lfloorfrac{n}{frac{i}{j}} floor}lambda(j) =sum_{i=1}^nLambda(lfloorfrac{n}{i} floor)\ Lambda(n)&=sqrt {n}-sum_{i=2}^nLambda(lfloorfrac{n}{i} floor) end{align} ]

      后面(Lambda(n))用杜教筛可以在(O(n^frac{2}{3}))内搞出来

      反正总的是(O(n^frac{2}{3}))的就对了。。。

      时间复杂度:(O(n^frac{2}{3}))

    代码

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    int getsqrt(ll n)
    {
    	int l=1,r=1000000;
    	while(l<r)
    	{
    		int mid=(l+r+1)>>1;
    		if((ll)mid*mid>n)
    			r=mid-1;
    		else
    			l=mid;
    	}
    	return l;
    }
    ll n;
    ll _sqrt;
    namespace hashset
    {
    	int getnum(ll x)
    	{
    		return n/x;
    	}
    }
    using hashset::getnum;
    int miu[10000010];
    int phi[10000010];
    int c[10000010];
    int cs[10000010];
    const int maxn=10000000;
    int b[10000010];
    int pri[1000010];
    int cnt;
    int d[10000010];
    int e[10000010];
    int f[10000010];
    int k;
    int vis[10000010];
    int qp[10000010];
    int qc[10000010];
    void init()
    {
    	c[1]=phi[1]=miu[1]=f[1]=e[1]=1;
    	d[1]=f[1]=0;
    	int i,j;
    	for(i=2;i<=maxn;i++)
    	{
    		if(!b[i])
    		{
    			miu[i]=-1;
    			phi[i]=i-1;
    			c[i]=-1;
    			pri[++cnt]=i;
    			d[i]=e[i]=1;
    			f[i]=1;
    		}
    		for(j=1;j<=cnt&&i*pri[j]<=maxn;j++)
    		{
    			b[i*pri[j]]=1;
    			c[i*pri[j]]=-c[i];
    			f[i*pri[j]]=f[i]+1;
    			if(i%pri[j]==0)
    			{
    				miu[i*pri[j]]=0;
    				phi[i*pri[j]]=phi[i]*pri[j];
    				d[i*pri[j]]=d[i]+1;
    				e[i*pri[j]]=max(d[i*pri[j]],e[i]);
    				break;
    			}
    			d[i*pri[j]]=1;
    			e[i*pri[j]]=e[i];
    			miu[i*pri[j]]=-miu[i];
    			phi[i*pri[j]]=phi[i]*phi[pri[j]];
    		}
    	}
    	for(i=1;i<=maxn;i++)
    	{
    		if(e[i]>k)
    			f[i]=0;
    		else
    			f[i]=(f[i]&1?-1:1)*(k-e[i]+1);
    		f[i]+=f[i-1];
    //		miu[i]+=miu[i-1];
    		phi[i]+=phi[i-1];
    		cs[i]=cs[i-1]+c[i];
    	}
    }
    int getphi(ll n)
    {
    	if(n<=maxn)
    		return phi[n];
    	int x=getnum(n);
    	if(vis[x]&1)
    		return qp[x];
    	vis[x]|=1;
    	ll i,j;
    	int s=n*(n+1)>>1;
    	for(i=2;i<=n;i=j+1)
    	{
    		j=n/(n/i);
    		s-=(j-i+1)*getphi(n/i);
    	}
    	qp[x]=s;
    	return s;
    }
    int getc(ll n)
    {
    	if(n<=maxn)
    		return cs[n];
    	int x=getnum(n);
    	if(vis[x]&2)
    		return qc[x];	
    	vis[x]|=2;
    	int s=getsqrt(n);
    	ll i,j;
    	for(i=2;i<=n;i=j+1)
    	{
    		j=n/(n/i);
    		s-=(j-i+1)*getc(n/i);
    	}
    	qc[x]=s;
    	return s;
    }
    ll pw[1000010];
    int pw2[1000010];
    int pw3[1000010];
    int getfd(ll n)
    {
    	if(n<=maxn)
    		return f[n];
    	int i,j;
    	for(i=1;(ll)i*i<=n;i++)
    	{
    		pw[i]=i;
    		pw2[i]=pw3[i]=c[i];
    	}
    	int m=i-1;
    	int s=0;
    	for(j=1;j<=k;j++)
    	{
    		for(i=1;i<=m;i++)
    		{
    			pw[i]*=i;
    			if(pw[i]>n)
    				break;
    			pw2[i]*=pw3[i];
    			s+=miu[i]*pw2[i]*getc(n/pw[i]);
    		}
    	}
    	return s;
    }
    int main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("b.in","r",stdin);
    	freopen("b.out","w",stdout);
    #endif
    	scanf("%lld%d",&n,&k);
    	_sqrt=getsqrt(n);
    	init();
    	int s=0;
    	ll i,j;
    	int now,last=0;
    	int ans=0;
    	for(i=1;i<=n;i=j+1)
    	{
    		j=n/(n/i);
    		now=getfd(j);
    		ans+=(now-last)*(2*getphi(n/i)-1);
    		last=now;
    	}
    	ans&=(1<<30)-1;
    	printf("%d
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    11个有用的移动网页开发App和HTML5框架
    移动平台前端开发总结(针对iphone,Android等手机)
    uploadify按钮中文乱码问题
    @page指令 validateRequest的作用
    C#,.net获取字符串中指定字符串的个数、所在位置与替换字符串
    lambda函数
    主函数
    Python函数
    猴子
    旋转
  • 原文地址:https://www.cnblogs.com/ywwyww/p/8513546.html
Copyright © 2020-2023  润新知