import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time
#使用tensorflow自带的工具加载MNIST手写数字集合 mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
#查看一下数据维度 mnist.train.images.shape
#查看target维度 mnist.train.labels.shape
batch_size = 128 X = tf.placeholder(tf.float32, [batch_size, 784], name='X_placeholder') Y = tf.placeholder(tf.int32, [batch_size, 10], name='Y_placeholder') w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights') b = tf.Variable(tf.zeros([1, 10]), name="bias") logits = tf.matmul(X, w) + b # 求交叉熵损失 entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss') # 求平均 loss = tf.reduce_mean(entropy) learning_rate = 0.01 optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) #迭代总轮次 n_epochs = 30 with tf.Session() as sess: # 在Tensorboard里可以看到图的结构 writer = tf.summary.FileWriter('./graphs/logistic_reg', sess.graph) start_time = time.time() sess.run(tf.global_variables_initializer()) n_batches = int(mnist.train.num_examples/batch_size) for i in range(n_epochs): # 迭代这么多轮 total_loss = 0 for _ in range(n_batches): X_batch, Y_batch = mnist.train.next_batch(batch_size) _, loss_batch = sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch}) total_loss += loss_batch print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches)) print('Total time: {0} seconds'.format(time.time() - start_time)) print('Optimization Finished!') # 测试模型 preds = tf.nn.softmax(logits) correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) n_batches = int(mnist.test.num_examples/batch_size) total_correct_preds = 0 for i in range(n_batches): X_batch, Y_batch = mnist.test.next_batch(batch_size) accuracy_batch = sess.run([accuracy], feed_dict={X: X_batch, Y:Y_batch}) total_correct_preds += accuracy_batch[0] print('Accuracy {0}'.format(total_correct_preds/mnist.test.num_examples)) writer.close()