• 使用TensorFlow完成MNIST手写体识别


    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    import numpy as np
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import time
    #使用tensorflow自带的工具加载MNIST手写数字集合
    mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 
    #查看一下数据维度
    mnist.train.images.shape

    #查看target维度
    mnist.train.labels.shape

    batch_size = 128
    X = tf.placeholder(tf.float32, [batch_size, 784], name='X_placeholder') 
    Y = tf.placeholder(tf.int32, [batch_size, 10], name='Y_placeholder')
    
    w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights')
    b = tf.Variable(tf.zeros([1, 10]), name="bias")
    
    logits = tf.matmul(X, w) + b 
    
    # 求交叉熵损失
    entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
    # 求平均
    loss = tf.reduce_mean(entropy)
    
    learning_rate = 0.01
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
    
    #迭代总轮次
    n_epochs = 30
    
    with tf.Session() as sess:
        # 在Tensorboard里可以看到图的结构
        writer = tf.summary.FileWriter('./graphs/logistic_reg', sess.graph)
    
        start_time = time.time()
        sess.run(tf.global_variables_initializer())    
        n_batches = int(mnist.train.num_examples/batch_size)
        for i in range(n_epochs): # 迭代这么多轮
            total_loss = 0
    
            for _ in range(n_batches):
                X_batch, Y_batch = mnist.train.next_batch(batch_size)
                _, loss_batch = sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch}) 
                total_loss += loss_batch
            print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
    
        print('Total time: {0} seconds'.format(time.time() - start_time))
    
        print('Optimization Finished!')
    
        # 测试模型
        
        preds = tf.nn.softmax(logits)
        correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1))
        accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
        
        n_batches = int(mnist.test.num_examples/batch_size)
        total_correct_preds = 0
        
        for i in range(n_batches):
            X_batch, Y_batch = mnist.test.next_batch(batch_size)
            accuracy_batch = sess.run([accuracy], feed_dict={X: X_batch, Y:Y_batch}) 
            total_correct_preds += accuracy_batch[0]
        
        print('Accuracy {0}'.format(total_correct_preds/mnist.test.num_examples))
    
        writer.close()

  • 相关阅读:
    后端程序员之路 28、一个轻量级HTTP Server的实现
    后端程序员之路 27、LogStash
    后端程序员之路 26、CAP理论
    后端程序员之路 25、Redis Cluster
    后端程序员之路 24、Redis hiredis
    后端程序员之路 23、一个c++的api framework
    后端程序员之路 22、RESTful API
    后端程序员之路 21、一个cgi的c++封装
    后端程序员之路 20、python复习
    flask框架的学习
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14763366.html
Copyright © 2020-2023  润新知