• 2021寒假(12)


    使用VGG模型进行测试

    # 模型读取
    
    import scipy.io
    import numpy as np
    import os
    import scipy.misc
    import matplotlib.pyplot as plt
    import tensorflow as tf
    
    def _conv_layer(input, weights, bias):
        conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
                padding='SAME')
        return tf.nn.bias_add(conv, bias)
    def _pool_layer(input):
        return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
                padding='SAME')
    def preprocess(image, mean_pixel):
        return image - mean_pixel
    def unprocess(image, mean_pixel):
        return image + mean_pixel
    def imread(path):
        return scipy.misc.imread(path).astype(np.float)
    def imsave(path, img):
        img = np.clip(img, 0, 255).astype(np.uint8)
        scipy.misc.imsave(path, img)
    print ("Functions for VGG ready")
    
    def net(data_path, input_image):
        layers = (
            'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
            'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
            'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
            'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
            'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
            'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
            'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
            'relu5_3', 'conv5_4', 'relu5_4'
        )
        data = scipy.io.loadmat(data_path)
        mean = data['normalization'][0][0][0]
        mean_pixel = np.mean(mean, axis=(0, 1))
        weights = data['layers'][0]
        net = {}
        current = input_image
        for i, name in enumerate(layers):
            kind = name[:4]
            if kind == 'conv':
                kernels, bias = weights[i][0][0][0][0]
                # matconvnet: weights are [width, height, in_channels, out_channels]
                # tensorflow: weights are [height, width, in_channels, out_channels]
                kernels = np.transpose(kernels, (1, 0, 2, 3))
                bias = bias.reshape(-1)
                current = _conv_layer(current, kernels, bias)
            elif kind == 'relu':
                current = tf.nn.relu(current)
            elif kind == 'pool':
                current = _pool_layer(current)
            net[name] = current
        assert len(net) == len(layers)
        return net, mean_pixel, layers
    print ("Network for VGG ready")
    
    cwd = os.getcwd()
    VGG_PATH = cwd + "/data/imagenet-vgg-verydeep-19.mat"
    IMG_PATH = cwd + "/data/cat.jpg"
    input_image = imread(IMG_PATH)
    shape = (1, input_image.shape[0], input_image.shape[1], input_image.shape[2])
    with tf.Session() as sess:
        image = tf.placeholder('float', shape=shape)
        nets, mean_pixel, all_layers = net(VGG_PATH, image)
        input_image_pre = np.array([preprocess(input_image, mean_pixel)])
        layers = all_layers  # For all layers
        # layers = ('relu2_1', 'relu3_1', 'relu4_1')
        for i, layer in enumerate(layers):
            print("[%d/%d] %s" % (i + 1, len(layers), layer))
            features = nets[layer].eval(feed_dict={image: input_image_pre})
    
            print(" Type of 'features' is ", type(features))
            print(" Shape of 'features' is %s" % (features.shape,))
            # Plot response
            if 1:
                plt.figure(i + 1, figsize=(10, 5))
                plt.matshow(features[0, :, :, 0], cmap=plt.cm.gray, fignum=i + 1)
                plt.title("" + layer)
                plt.colorbar()
                plt.show()
  • 相关阅读:
    scanf和cin的返回值
    C++ STL中Map的按Key排序跟按Value排序
    name lookup of 'res' changed for new ISO 'res' scoping
    string中c_str()、data()、copy(p,n)函数的用法
    C中malloc的使用(转)
    codeforces 653B B. Bear and Compressing(dfs)
    codeforces 653A A. Bear and Three Balls(水题)
    hdu-5646 DZY Loves Partition(贪心)
    hdu-5645 DZY Loves Balls(水题)
    codeforces 655D D. Robot Rapping Results Report(拓扑排序+拓扑序记录)
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14269868.html
Copyright © 2020-2023  润新知