• TF-IDF理解及其Java实现


    TF-IDF

    前言

    前段时间,又具体看了自己以前整理的TF-IDF,这里把它发布在博客上,知识就是需要不断的重复的,否则就感觉生疏了。

    TF-IDF理解

    TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术, TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF反文档频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m + k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。这就是IDF的不足之处.

    TF公式:

     mathrm{tf_{i,j}} = frac{n_{i,j}}{sum_k n_{k,j}}       

    以上式子中 n_{i,j} 是该词在文件d_{j}中的出现次数,而分母则是在文件d_{j}中所有字词的出现次数之和。

    IDF公式:

     mathrm{idf_{i}} =  log frac{|D|}{|{j: t_{i} in d_{j}}|}  

    • |D|:语料库中的文件总数
    •  |{ j: t_{i} in d_{j}}| :包含词语 t_{i} 的文件数目(即 n_{i,j} 
eq 0的文件数目)如果该词语不在语料库中,就会导致被除数为零,因此一般情况下使用1 + |{j : t_{i} in d_{j}}|

    然后

     mathrm{tf{}idf_{i,j}} = mathrm{tf_{i,j}} 	imes  mathrm{idf_{i}}

    TF-IDF案例

    案例:假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。一个计算文件频率 (DF) 的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 lg(10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。

    TF-IDF实现(Java)

    这里采用了外部插件IKAnalyzer-2012.jar,用其进行分词,插件和测试文件可以从这里下载点击

    具体代码如下:

    package tfidf;
    
    import java.io.*;
    import java.util.*;
    
    import org.wltea.analyzer.lucene.IKAnalyzer;
    
    public class ReadFiles {
    
        /**
         * @param args
         */    
        private static ArrayList<String> FileList = new ArrayList<String>(); // the list of file
    
        //get list of file for the directory, including sub-directory of it
        public static List<String> readDirs(String filepath) throws FileNotFoundException, IOException
        {
            try
            {
                File file = new File(filepath);
                if(!file.isDirectory())
                {
                    System.out.println("输入的[]");
                    System.out.println("filepath:" + file.getAbsolutePath());
                }
                else
                {
                    String[] flist = file.list();
                    for(int i = 0; i < flist.length; i++)
                    {
                        File newfile = new File(filepath + "\" + flist[i]);
                        if(!newfile.isDirectory())
                        {
                            FileList.add(newfile.getAbsolutePath());
                        }
                        else if(newfile.isDirectory()) //if file is a directory, call ReadDirs
                        {
                            readDirs(filepath + "\" + flist[i]);
                        }                    
                    }
                }
            }catch(FileNotFoundException e)
            {
                System.out.println(e.getMessage());
            }
            return FileList;
        }
        
        //read file
        public static String readFile(String file) throws FileNotFoundException, IOException
        {
            StringBuffer strSb = new StringBuffer(); //String is constant, StringBuffer can be changed.
            InputStreamReader inStrR = new InputStreamReader(new FileInputStream(file), "gbk"); //byte streams to character streams
            BufferedReader br = new BufferedReader(inStrR); 
            String line = br.readLine();
            while(line != null){
                strSb.append(line).append("
    ");
                line = br.readLine();    
            }
            
            return strSb.toString();
        }
        
        //word segmentation
        public static ArrayList<String> cutWords(String file) throws IOException{
            
            ArrayList<String> words = new ArrayList<String>();
            String text = ReadFiles.readFile(file);
            IKAnalyzer analyzer = new IKAnalyzer();
            words = analyzer.split(text);
            
            return words;
        }
        
        //term frequency in a file, times for each word
        public static HashMap<String, Integer> normalTF(ArrayList<String> cutwords){
            HashMap<String, Integer> resTF = new HashMap<String, Integer>();
            
            for(String word : cutwords){
                if(resTF.get(word) == null){
                    resTF.put(word, 1);
                    System.out.println(word);
                }
                else{
                    resTF.put(word, resTF.get(word) + 1);
                    System.out.println(word.toString());
                }
            }
            return resTF;
        }
        
        //term frequency in a file, frequency of each word
        public static HashMap<String, Float> tf(ArrayList<String> cutwords){
            HashMap<String, Float> resTF = new HashMap<String, Float>();
            
            int wordLen = cutwords.size();
            HashMap<String, Integer> intTF = ReadFiles.normalTF(cutwords); 
            
            Iterator iter = intTF.entrySet().iterator(); //iterator for that get from TF
            while(iter.hasNext()){
                Map.Entry entry = (Map.Entry)iter.next();
                resTF.put(entry.getKey().toString(), Float.parseFloat(entry.getValue().toString()) / wordLen);
                System.out.println(entry.getKey().toString() + " = "+  Float.parseFloat(entry.getValue().toString()) / wordLen);
            }
            return resTF;
        } 
        
        //tf times for file
        public static HashMap<String, HashMap<String, Integer>> normalTFAllFiles(String dirc) throws IOException{
            HashMap<String, HashMap<String, Integer>> allNormalTF = new HashMap<String, HashMap<String,Integer>>();
            
            List<String> filelist = ReadFiles.readDirs(dirc);
            for(String file : filelist){
                HashMap<String, Integer> dict = new HashMap<String, Integer>();
                ArrayList<String> cutwords = ReadFiles.cutWords(file); //get cut word for one file
                
                dict = ReadFiles.normalTF(cutwords);
                allNormalTF.put(file, dict);
            }    
            return allNormalTF;
        }
        
        //tf for all file
        public static HashMap<String,HashMap<String, Float>> tfAllFiles(String dirc) throws IOException{
            HashMap<String, HashMap<String, Float>> allTF = new HashMap<String, HashMap<String, Float>>();
            List<String> filelist = ReadFiles.readDirs(dirc);
            
            for(String file : filelist){
                HashMap<String, Float> dict = new HashMap<String, Float>();
                ArrayList<String> cutwords = ReadFiles.cutWords(file); //get cut words for one file
                
                dict = ReadFiles.tf(cutwords);
                allTF.put(file, dict);
            }
            return allTF;
        }
        public static HashMap<String, Float> idf(HashMap<String,HashMap<String, Float>> all_tf){
            HashMap<String, Float> resIdf = new HashMap<String, Float>();
            HashMap<String, Integer> dict = new HashMap<String, Integer>();
            int docNum = FileList.size();
            
            for(int i = 0; i < docNum; i++){
                HashMap<String, Float> temp = all_tf.get(FileList.get(i));
                Iterator iter = temp.entrySet().iterator();
                while(iter.hasNext()){
                    Map.Entry entry = (Map.Entry)iter.next();
                    String word = entry.getKey().toString();
                    if(dict.get(word) == null){
                        dict.put(word, 1);
                    }else {
                        dict.put(word, dict.get(word) + 1);
                    }
                }
            }
            System.out.println("IDF for every word is:");
            Iterator iter_dict = dict.entrySet().iterator();
            while(iter_dict.hasNext()){
                Map.Entry entry = (Map.Entry)iter_dict.next();
                float value = (float)Math.log(docNum / Float.parseFloat(entry.getValue().toString()));
                resIdf.put(entry.getKey().toString(), value);
                System.out.println(entry.getKey().toString() + " = " + value);
            }
            return resIdf;
        }
        public static void tf_idf(HashMap<String,HashMap<String, Float>> all_tf,HashMap<String, Float> idfs){
            HashMap<String, HashMap<String, Float>> resTfIdf = new HashMap<String, HashMap<String, Float>>();
                
            int docNum = FileList.size();
            for(int i = 0; i < docNum; i++){
                String filepath = FileList.get(i);
                HashMap<String, Float> tfidf = new HashMap<String, Float>();
                HashMap<String, Float> temp = all_tf.get(filepath);
                Iterator iter = temp.entrySet().iterator();
                while(iter.hasNext()){
                    Map.Entry entry = (Map.Entry)iter.next();
                    String word = entry.getKey().toString();
                    Float value = (float)Float.parseFloat(entry.getValue().toString()) * idfs.get(word); 
                    tfidf.put(word, value);
                }
                resTfIdf.put(filepath, tfidf);
            }
            System.out.println("TF-IDF for Every file is :");
            DisTfIdf(resTfIdf);
        }
        public static void DisTfIdf(HashMap<String, HashMap<String, Float>> tfidf){
            Iterator iter1 = tfidf.entrySet().iterator();
            while(iter1.hasNext()){
                Map.Entry entrys = (Map.Entry)iter1.next();
                System.out.println("FileName: " + entrys.getKey().toString());
                System.out.print("{");
                HashMap<String, Float> temp = (HashMap<String, Float>) entrys.getValue();
                Iterator iter2 = temp.entrySet().iterator();
                while(iter2.hasNext()){
                    Map.Entry entry = (Map.Entry)iter2.next(); 
                    System.out.print(entry.getKey().toString() + " = " + entry.getValue().toString() + ", ");
                }
                System.out.println("}");
            }
            
        }
        public static void main(String[] args) throws IOException {
            // TODO Auto-generated method stub
            String file = "D:/testfiles";
    
            HashMap<String,HashMap<String, Float>> all_tf = tfAllFiles(file);
            System.out.println();
            HashMap<String, Float> idfs = idf(all_tf);
            System.out.println();
            tf_idf(all_tf, idfs);
            
        }
    
    }

    结果如下图:

    常见问题

    没有加入lucene jar包

    lucene包和je包版本不适合

  • 相关阅读:
    [收集]Grid Animation-01
    陕西航天大学横幅动态测试
    IPC机制
    Android使用权限
    DDMS
    看懂UML类图和时序图
    Frameworks detected: Android framework is detected in the project
    CoordinatorLayout父布局的Behavior
    Android权限记录
    AndroidManifest.xml文件中属性记录
  • 原文地址:https://www.cnblogs.com/ywl925/p/3275878.html
Copyright © 2020-2023  润新知