• Trie 字典树


    参考文献 :《信息奥赛一本通》,《算法竞赛进阶指南》

    根据一位大佬模仿下排版....

    介绍:

    字典树也叫做Trie或者字母树,指的是某个字符串集合,如{AAA,AAG,T.TCA,TG}这样的

    集合对应的形的有根树,用图片解释食用更香:

    每个顶点代表从根到该节点所对应的字符串,就是从根到这个节点的子符全部串在一起,

    所以我们也叫Trie上的边叫做转移,顶点为状态。

    顶点上还能存储额外信息,如下

    这些从根到这些标红点组成的字符串都是集合中的元素,所以叫他们为单词节点(结==节,懒得改了)

    还有,任意一个线节点代表的字符串,都是这些实际字符串中某些串的前缀。specially,根节点表示空串。

       任意一节点,到子节点边上字符都不同,这就是利用了串的公共前缀,如TG与TCA公共前缀为T....

         本质上它就是通过空间去换取时间。

    操作


    1.初始化:

    一棵空的Trie只剩下一个根节点,它的字符指针指向空,显然。

    2.插入操作

    当我们需要插入一个字符串s时,我们让一个指针P先指向根节点,然后依次扫描s中的每个字符x:

      若P的x字符指针指向一个已经存在的节点A,则让P = A;

      若P的x字符指针指向空,就是原来不存在这个字符的连接节点,那就得给它构造一个节点,再让P的x字符指针指向A,最后让P=A;

      当s字符全部扫描完毕,就在当前节点P标记它是末尾。

    long trie[MAXN][26],tot=1;//初始化,且假定字符串全    
    bool end[MAXN];              //由小写字母构成
    inline void insert(char* s){
        long len=strlen(s),p=1;
        for(long i=0;i<len;i++){
        long ch=s[i]-'a';
        if(trie[p][ch]==0) trie[p][ch]=++tot;
        p=trie[p][ch];
            }
        end[p]=1;
    }  

      

    3.查询操作

    当我们需要查询时,我们就先让一个指针P指向根结点,再依次扫描s中每一个字符x:

      若P的x字符指针指向空,那就是没找到嘛,所以就干脆不找下去了,前缀都不一样找下去没啥意思。

      若P的x字符指针指向一个已经存在的节点A,那就是还能有,于是让P=A;

      当s扫描一遍后,若发现当前P被标记在一个字符串的末尾,则说明s是在这棵字典树是存在的,反之则说明s没在里面。

    bool search(char* s){
        long len=strlen(s),p=1;
        for(long i=0;i<len;i++){
        p=trie[p][s[i]-'a'];
        if(p==0) return 0;//只要指向下一个为空,那就是没有了
        }
        reuturn end[p];//不能直接判1,因为可能这只是某个字
                              //符串的前缀而已    
    }

      

    ~~~字符数据都体现在边上,节点只是保留额外信息,空间复杂度为O(NC),N为节点数,C为字符集大小。

    其余的只能多刷刷题

    kmp和trie只是为了给AC自动机打基础

  • 相关阅读:
    Fiddler 捕获HTTPS流量
    Fiddler 弱网测试
    Fiddler Composer设计器, Fitter过滤器,断点
    Fiddler Statistics统计,Inspector检查器,AutoResponder自动响应器
    Fiddler Session List会话列表、命令行与状态栏
    Fiddler菜单栏工具栏
    HTTP协议请求与响应详解
    Postman 运用Cookie
    Postman 文件上传请求
    Postman 头域操作
  • 原文地址:https://www.cnblogs.com/yuzhe123/p/13333207.html
Copyright © 2020-2023  润新知