• 小波变换学习~语音端点检测


    参考:

    • 现代语音信号处理,p97
    • Precise detection of speech endpoints dynamically: A wavlet convolution based approach, 2018

    1. 小波变换,是一种时频分析方法,具有多分辨率的特点,在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率;在高频部分具有较高的时间分辨率和较低的频率分辨率。

    wavlet transform:就是把某一基本小波或母小波函数做位移b后,再在不同尺度a下与待分析信号f(t)做内积。

    • covolution卷积是小波变换的基石。
    • 多分辨率:L(R)中的f描述为具有一系列近似函数的逼近极限,其中每一个近似函数都是f在不同分辨率子空间上的投影

    2. 傅里叶采用三角级数进行分解与重构,较好地描述了信号的频率特性,但对奇异信号重构效果较差。

      ----连续小波变换(CWT):目的在于从信号中抽取信息

      ----离散小波变换(DWT):工程实现。目的在于重构信号

      ----

    3.  小波分解是语音端点检测的关键。

      sparse representation,稀疏表示是寻找信号中相关信息和模式的有效方法。通过使用fourier或小波基在振荡波形上分解信号来实现。

      小波变换=小波系数

    •   input:离散语音信号x(t)
    •   output:在离散信号上卷积获得不同尺度的系数值coefficients(),length(x(t))=length(wavlet)
    •   low scale低尺度因子对应着高频;用于识别语音序列存在的位置
    •   high scale高尺度因子对应着低频;用于延伸语音序列开始和结尾的清音、浊音部分

      一系列尺度因子根据频率范围(frequency)被选择300hz~3000hz

      在不同尺度因子scales下的小波系数序列coefficient

      

    天狼啸月
  • 相关阅读:
    关于JDK和eclipse的安装和汉化
    关于Android SDK Manager更新速度慢的解决方法
    Navicat Premium 11破解补丁下载及安装方法
    win8.1下无法运行vc++6.0的解决方法
    在Editplus中配置java的(带包)编译(javac)和运行(java)的方法
    关于在Editplus中设置内容提示比如syso的快捷输出的方法
    关于win8/win8.1系统不能调节亮度的解决办法
    JDK的安装和Java环境变量配置
    关于classpath
    Genymotion模拟器的安装及常见问题解决方法
  • 原文地址:https://www.cnblogs.com/yuyongsheng1990/p/9634832.html
Copyright © 2020-2023  润新知