• 图像识别之物体识别


    '''
        物体识别
    '''
    import cv2 as cv
    import os
    import warnings
    import numpy as np
    
    import hmmlearn.hmm as hl
    
    warnings.filterwarnings('ignore', category=DeprecationWarning)
    np.seterr(all='ignore')
    
    
    def search_objects(directory):
        directory = os.path.normpath(directory)
        if not os.path.isdir(directory):
            raise IOError('the directory' + directory + 'doesnt exist!')
        objects = {}
        for curdir, subdirs, files in os.walk(directory):
            for jpeg in (file for file in files if file.endswith('.jpg')):
                path = os.path.join(curdir, jpeg)
                label = path.split(os.path.sep)[-2]
                if label not in objects:
                    objects[label] = []
                objects[label].append(path)
    
        return objects
    
    
    train_objects = search_objects('./ml_data/objects/training/')
    print(train_objects)
    
    train_x, train_y = [], []
    for label, filenames in train_objects.items():
        descs = np.array([])
        for filename in filenames:
            image = cv.imread(filename)
            gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
            h, w = gray.shape[:2]
            f = 200 / min(h, w)
            gray = cv.resize(gray, None, fx=f, fy=f)
            star = cv.xfeatures2d.StartDetector_create()
            keypoints = star.detect(gray)
            sift = cv.xfeatures2d.SIFT_create()
            desc = sift.compute(gray, keypoints)
            if len(descs) == 0:
                descs = desc
            else:
                descs = np.append(descs, desc, axis=0)
    
        train_x.append(descs)
        train_y.append(label)
    
    models = {}
    for descs, label in zip(train_x, train_y):
        model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
        models[label] = model.fit(descs)
    
    test_objects = search_objects('./ml_data/objects/testing/')
    print(test_objects)
    
    test_x, test_y, test_z = [], [], []
    for label, filenames in test_objects.items():
        test_z.append([])
        descs = np.array([])
        for filename in filenames:
            image = cv.imread(filename)
            test_z[-1].append(image)
            gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
            h, w = gray.shape[:2]
            f = 200 / min(h, w)
            gray = cv.resize(gray, None, fx=f, fy=f)
            star = cv.xfeatures2d.StartDetector_create()
            keypoints = star.detect(gray)
            sift = cv.xfeatures2d.SIFT_create()
            desc = sift.compute(gray, keypoints)
            if len(descs) == 0:
                descs = desc
            else:
                descs = np.append(descs, desc, axis=0)
    
        test_x.append(descs)
        test_y.append(label)
    
    pred_test_y = []
    for descs in test_x:
        best_score, best_label = None, None
        for label, model in models.items():
            score = model.score(descs)
            if (best_score is None) or (best_score < score):
                best_score, best_label = score, label
        pred_test_y.append(best_label)
    i = 0
    for label, pred_label, images in zip(test_y, pred_test_y, test_z):
        for image in images:
            i += 1
            cv.imshow('{} - {} {} {}'.format(i, label, '==' if label == pred_label else '!=', pred_label), image)
    cv.waitKey()
  • 相关阅读:
    Java运算符>、>>、>>>三者的区别
    深入浅析react native es6语法
    javascript基础学习(十五)
    javascript基础学习(十四)
    javascript基础学习(十三)
    javascript基础学习(十二)
    javascript基础学习(十一)
    javascript基础学习(十)
    javascript基础学习(九)
    javascript基础学习(八)
  • 原文地址:https://www.cnblogs.com/yuxiangyang/p/11258715.html
Copyright © 2020-2023  润新知