• 实验四 决策树算法及应用


    作业信息

    博客班级 机器学习实验-计算机18级
    作业要求 作业要求
    作业目标 理解决策树算法原理,掌握决策树算法框架
    学号 3180701301

    一、实验目的
    1.理解决策树算法原理,掌握决策树算法框架;
    2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
    3.能根据不同的数据类型,选择不同的决策树算法;
    4.针对特定应用场景及数据,能应用决策树算法解决实际问题。
    二、实验内容
    1.设计算法实现熵、经验条件熵、信息增益等方法。
    2.实现ID3算法。
    3.熟悉sklearn库中的决策树算法;
    4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
    5.针对iris数据集,利用自编决策树算法进行类别预测。
    三、实验报告要求
    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论ID3、5算法的应用场景;
    四、实验过程及其步骤

    1、

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    from math import log
    import pprint
    def create_data():
        datasets = [['青年', '', '', '一般', ''],
                    ['青年', '', '', '', ''],
                    ['青年', '', '', '', ''],
                    ['青年', '', '', '一般', ''],
                    ['青年', '', '', '一般', ''],
                    ['中年', '', '', '一般', ''],
                    ['中年', '', '', '', ''],
                    ['中年', '', '', '', ''],
                    ['中年', '', '', '非常好', ''],
                    ['中年', '', '', '非常好', ''],
                    ['老年', '', '', '非常好', ''],
                    ['老年', '', '', '', ''],
                    ['老年', '', '', '', ''],
                    ['老年', '', '', '非常好', ''],
                    ['老年', '', '', '一般', ''],
                    ]
        labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
        # 返回数据集和每个维度的名称
        return datasets, labels
    datasets, labels = create_data()
    train_data = pd.DataFrame(datasets, columns=labels)
    train_data

    X, y = data[:,:-1], data[:,-1]  # 数据类型转换,为了后面的数学计算
    #
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                for p in label_count.values()])
        return ent
    # def entropy(y):
    # """
    # Entropy of a label sequence
    # """
    # hist = np.bincount(y)
    # ps = hist / np.sum(hist)
    # return -np.sum([p * np.log2(p) for p in ps if p > 0])
    # 经验条件熵
    def cond_ent(datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum(
            [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
        return cond_ent
    # 信息增益
    def info_gain(ent, cond_ent):
        return ent - cond_ent
    def info_gain_train(datasets):
        count = len(datasets[0]) - 1
        ent = calc_ent(datasets)
    # ent = entropy(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
            print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
    info_gain_train(np.array(datasets))

     2、

    # 定义节点类 二叉树
    class Node:
        def __init__(self, root=True, label=None, feature_name=None, feature=None):
            self.root = root
            self.label = label
            self.feature_name = feature_name
            self.feature = feature
            self.tree = {}
            self.result = {
                'label:': self.label,
                'feature': self.feature,
                'tree': self.tree
            }
        def __repr__(self):
            return '{}'.format(self.result)
        def add_node(self, val, node):
            self.tree[val] = node
        def predict(self, features):
            if self.root is True:
                return self.label
            return self.tree[features[self.feature]].predict(features)
    class DTree:
        def __init__(self, epsilon=0.1):
            self.epsilon = epsilon
            self._tree = {}
        #
        @staticmethod
        def calc_ent(datasets):
            data_length = len(datasets)
            label_count = {}
            for i in range(data_length):
                label = datasets[i][-1]
                if label not in label_count:
                    label_count[label] = 0
                label_count[label] += 1
            ent = -sum([(p / data_length) * log(p / data_length, 2)
                        for p in label_count.values()])
            return ent
        # 经验条件熵
        def cond_ent(self, datasets, axis=0):
            data_length = len(datasets)
            feature_sets = {}
            for i in range(data_length):
                feature = datasets[i][axis]
                if feature not in feature_sets:
                    feature_sets[feature] = []
                feature_sets[feature].append(datasets[i])
            cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                            for p in feature_sets.values()])
            return cond_ent
        # 信息增益
        @staticmethod
        def info_gain(ent, cond_ent):
            return ent - cond_ent
        def info_gain_train(self, datasets):
            count = len(datasets[0]) - 1
            ent = self.calc_ent(datasets)
            best_feature = []
            for c in range(count):
                c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
                best_feature.append((c, c_info_gain))
            # 比较大小
            best_ = max(best_feature, key=lambda x: x[-1])
            return best_
        def train(self, train_data):
            """
            input:数据集D(DataFrame格式),特征集A,阈值eta
            output:决策树T
            """
            _, y_train, features = train_data.iloc[:, :
                                                    -1], train_data.iloc[:,
                                                                        -1], train_data.columns[:
                                                                                                -1]
            # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
            if len(y_train.value_counts()) == 1:
                return Node(root=True, label=y_train.iloc[0])
            # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
            if len(features) == 0:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
            max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
            max_feature_name = features[max_feature]
            # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
            if max_info_gain < self.epsilon:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 5,构建Ag子集
            node_tree = Node(
                root=False, feature_name=max_feature_name, feature=max_feature)
            feature_list = train_data[max_feature_name].value_counts().index
            for f in feature_list:
                sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                                f].drop([max_feature_name], axis=1)
                # 6, 递归生成树
                sub_tree = self.train(sub_train_df)
                node_tree.add_node(f, sub_tree)
            # pprint.pprint(node_tree.tree)
            return node_tree
        def fit(self, train_data):
            self._tree = self.train(train_data)
            return self._tree
        def predict(self, X_test):
            return self._tree.predict(X_test)
    datasets, labels = create_data()
    data_df = pd.DataFrame(datasets, columns=labels)
    dt = DTree()
    tree = dt.fit(data_df)
    tree

    dt.predict(['老年', '', '', '一般'])

    # data
    def create_data():
        iris = load_iris()
        df = pd.DataFrame(iris.data, columns=iris.feature_names)
        df['label'] = iris.target
        df.columns = [
            'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
        ]
        data = np.array(df.iloc[:100, [0, 1, -1]])
        # print(data)
        return data[:, :2], data[:, -1]
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree import export_graphviz
    import graphviz
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train,)

    clf.score(X_test, y_test)

    tree_pic = export_graphviz(clf, out_file="mytree.pdf")
    with open('mytree.pdf') as f:
        dot_graph = f.read()
    graphviz.Source(dot_graph)
    from sklearn.tree import DecisionTreeClassifier
    from sklearn import preprocessing
    import numpy as np
    import pandas as pd
    from sklearn import tree
    import graphviz
    features = ["年龄", "有工作", "有自己的房子", "信贷情况"]
    X_train = pd.DataFrame([
        ["青年", "", "", "一般"],
        ["青年", "", "", ""],
        ["青年", "", "", ""],
        ["青年", "", "", "一般"],
        ["青年", "", "", "一般"],
        ["中年", "", "", "一般"],
        ["中年", "", "", ""],
        ["中年", "", "", ""],
        ["中年", "", "", "非常好"],
        ["中年", "", "", "非常好"],
        ["老年", "", "", "非常好"],
        ["老年", "", "", ""],
        ["老年", "", "", ""],
        ["老年", "", "", "非常好"],
        ["老年", "", "", "一般"]
    ])
    y_train = pd.DataFrame(["", "", "", "", "",
                            "", "", "", "", "",
                            "", "", "", "", ""])
    # 数据预处理
    le_x = preprocessing.LabelEncoder()
    le_x.fit(np.unique(X_train))
    X_train = X_train.apply(le_x.transform)
    le_y = preprocessing.LabelEncoder()
    le_y.fit(np.unique(y_train))
    y_train = y_train.apply(le_y.transform)
    # 调用sklearn.DT建立训练模型
    model_tree = DecisionTreeClassifier()
    model_tree.fit(X_train, y_train)
    # 可视化
    dot_data = tree.export_graphviz(model_tree, out_file=None,
                                        feature_names=features,
                                        class_names=[str(k) for k in np.unique(y_train)],
                                        filled=True, rounded=True,
                                        special_characters=True)
    graph = graphviz.Source(dot_data)
    graph
    import numpy as np
    class LeastSqRTree:
        def __init__(self, train_X, y, epsilon):
            # 训练集特征值
            self.x = train_X
            # 类别
            self.y = y
            # 特征总数
            self.feature_count = train_X.shape[1]
            # 损失阈值
            self.epsilon = epsilon
            # 回归树
            self.tree = None
        def _fit(self, x, y, feature_count, epsilon):
            # 选择最优切分点变量j与切分点s
            (j, s, minval, c1, c2) = self._divide(x, y, feature_count)
            # 初始化树
            tree = {"feature": j, "value": x[s, j], "left": None, "right": None}
            if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1:
                tree["left"] = c1
            else:
                tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])],
                                         y[np.where(x[:, j] <= x[s, j])],
                                         self.feature_count, self.epsilon)
            if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1:
                tree["right"] = c2
            else:
                tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])],
                                          y[np.where(x[:, j] > x[s, j])],
                                          self.feature_count, self.epsilon)
            return tree
        def fit(self):
            self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon)
        @staticmethod
        def _divide(x, y, feature_count):
            # 初始化损失误差
            cost = np.zeros((feature_count, len(x)))
            # 公式5.21
            for i in range(feature_count):
                for k in range(len(x)):
                    # k行i列的特征值
                    value = x[k, i]
                    y1 = y[np.where(x[:, i] <= value)]
                    c1 = np.mean(y1)
                    y2 = y[np.where(x[:, i] > value)]
                    c2 = np.mean(y2)
                    y1[:] = y1[:] - c1
                    y2[:] = y2[:] - c2
                    cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2)
            # 选取最优损失误差点
            cost_index = np.where(cost == np.min(cost))
            # 选取第几个特征值
            j = cost_index[0][0]
            # 选取特征值的切分点
            s = cost_index[1][0]
            # 求两个区域的均值c1,c2
            c1 = np.mean(y[np.where(x[:, j] <= x[s, j])])
            c2 = np.mean(y[np.where(x[:, j] > x[s, j])])
            return j, s, cost[cost_index], c1, c2
    train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T
    y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00])
    model_tree = LeastSqRTree(train_X, y, .2)
    model_tree.fit()
    model_tree.tree

     五、实验小结

    本次实验学习了决策树决策树算法原理,并且实现了简单的掌握决策树算法,以及决策树学习算法的特征选择、树的生成和树的剪枝。

    决策树只需要一次构建,反复使用,效率较高,每一次预测的最大计算次数不超过决策树的深度,可以处理不相关特征数据,能够处理多输出的问题,并且对缺失值不敏感;但是对连续性的字段比较难预测,容易出现过拟合,当类别太多时,错误可能就会增加的比较快,而且对于各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。

  • 相关阅读:
    Intellij IDEA 使用spring-boot-devtools无效解决办法一
    使用docker安装myql/redis等软件
    mybatis generator插件系列--分页插件
    mybatis generator插件系列--lombok插件 (减少百分之九十bean代码)
    linux设置端口转发(一键设置)
    redis教程(The little redis book中文版)
    Redis 5种数据结构及其使用场景举例--STRING
    String中hashCode方法的线程安全
    java ShutdownHook介绍与使用
    ACM 模板库
  • 原文地址:https://www.cnblogs.com/yuwenhan/p/14932621.html
Copyright © 2020-2023  润新知