• U_Net原理及tensorflow的实现


    Unet——用于图像边缘检测,是FCN的改进

    如上图是UNET的架构图,可以发现器输入图像和输出图像不一致,如果我们需要输入图像和输出图像一致时,在卷积时,使用padding=“SAME”即可,然后再边缘检测时,就相当与像素级别的二分类问题,用交叉熵做loss函数即可。但位置检测常用IOU作为loss函数。

    个人觉得UNET的优点:

    1.Unet的去除了全链接层,可以接受图像大小不一致的输入(在训练时,同一个批图像大小可以不一致吗?)

    2.Unet的最重要的是,他还保留了位置信息,讲低级特征图和编码部分对应连接,保留位置信息,所以可以用于图像生成、图像的语义分割和GAN相结合等等,和胶囊网络的比较?

    3.U-Net: Convolutional Networks for Biomedical Image Segmentation,是边缘检测的论文,边缘检测这类问题,标签数据是非常少且昂贵的,而要训练deep network需要很多数据,所以应该应用用了图像镜像,图像扭曲,仿射变换等图像增强技术。

     tensorflow的实现

    #coding:utf-8
    import tensorflow as tf
    import argparse
    import Augmentor
    import os
    import glob
    from PIL import Image
    import numpy as np
    from data import *
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_size', type=int, default=512)
    parser.add_argument('--batch_size', type=int, default=2)
    parser.add_argument('--n_epoch', type=int, default=2000)
    param = parser.parse_args()
    def conv_pool(input,filters_1,filters_2,kernel_size,name = 'conv2d'):
       with tf.variable_scope(name):
            conv_1 = tf.layers.conv2d(inputs=input,filters= filters_1,kernel_size=kernel_size,padding="same",
                                      activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_1")
            conv_2 = tf.layers.conv2d(inputs=conv_1,filters= filters_2,kernel_size=kernel_size,padding="same",
                                      activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_2")
            pool = tf.layers.max_pooling2d(inputs = conv_2,pool_size = [2,2],strides = 2,padding = "same",name = 'pool')
            return conv_2,pool
    
    def upconv_concat(inputA,inputB,filters,kernel_size,name="upconv"):
         with tf.variable_scope(name):
             up_conv = tf.layers.conv2d_transpose(inputs = inputA,filters = filters,kernel_size = kernel_size,strides = (2,2),padding ="same",
                                            activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = 'up_conv')
             return tf.concat([up_conv, inputB], axis=-1, name="concat")
            
    
    class U_net(object):
        def __init__(self):
            self.name = "U_NET"
        def __call__(self,x,reuse = False):
            with tf.variable_scope(self.name) as scope:
                if reuse:
                    scope.reuse_variables()
                conv_1,pool_1 = conv_pool(x,64,64,[3,3],name="conv_pool_1")
                conv_2,pool_2 = conv_pool(pool_1,128,128,[3,3],name="conv_pool_2")
                conv_3,pool_3 = conv_pool(pool_2,256,256,[3,3],name="conv_pool_3")
                conv_4,pool_4 = conv_pool(pool_3,512,512,[3,3],name="conv_pool_4")
                conv_5,pool_5 = conv_pool(pool_4,1024,1024,[3,3],name="conv_pool_5")
                
                upconv_6 = upconv_concat(conv_5,conv_4,512,[2,2],name="upconv_6")
                conv_6,pool_6 = conv_pool(upconv_6,512,512,[3,3],name="conv_pool_6")
                
                upconv_7 = upconv_concat(conv_6,conv_3,256,[2,2],name="upconv_7")
                conv_7,pool_7 = conv_pool(upconv_7,256,256,[3,3],name="conv_pool_7")
                
                upconv_8 = upconv_concat(conv_7,conv_2,128,[2,2],name="upconv_8")
                conv_8,pool_8 = conv_pool(upconv_8,128,128,[3,3],name="conv_pool_8")
                
                upconv_9 = upconv_concat(conv_8,conv_1,64,[2,2],name="upconv_9")
                conv_9,pool_9 = conv_pool(upconv_9,64,64,[3,3],name="conv_pool_9")
    
                conv_10 = tf.layers.conv2d(inputs=conv_9,filters= 2,kernel_size=[3,3],padding="same",
                                      activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_10")
                output_image = tf.layers.conv2d(inputs=conv_10,filters= 1,kernel_size=[1,1],padding="same",
                                      activation=tf.nn.sigmoid,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "output_image")
                
                return output_image
                
        @property
        def vars(self):
            return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)        
    class U_net_train(object):
        def __init__(self,unet,data,name = "unet_train"):
            self.name = name
            self.unet = unet
            self.imagesize = param.image_size
            self.train_data = tf.placeholder(tf.float32, shape=[None, self.imagesize, self.imagesize, 1], name = "train_data")
            tf.summary.image("train_image",self.train_data,2)
            self.train_label = tf.placeholder(tf.float32, shape=[None, self.imagesize, self.imagesize, 1], name = "train_label")
            tf.summary.image("train_label",self.train_label,2)
            self.data = data
            self.predict_label = self.unet(self.train_data)
            tf.summary.image("output_image",self.predict_label,2)
            with tf.name_scope('loss'):
                self.loss = - tf.reduce_mean(self.train_label * tf.log(self.predict_label + 1e-8) + (1-self.train_label) * tf.log(1 - self.predict_label + 1e-8 ))
                tf.summary.scalar('loss',self.loss)
            #self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = self.train_label,logits = self.predict_label,name = 'loss'))
            with tf.name_scope("train"):
                self.optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(self.loss)
            self.saver = tf.train.Saver()
            gpu_options = tf.GPUOptions(allow_growth = True)
            with tf.name_scope('init_sessoin'): 
                self.sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
            #self.sess = tf.Session()
            self.merged = tf.summary.merge_all()
        def train(self, sample_dir, restore = False,ckpt_dir='ckpt'):
            if restore:
                print("hhhh")
                self.saver.restore(self.sess,"ckpt/unet.ckpt")
            self.sess.run(tf.global_variables_initializer())
            writer = tf.summary.FileWriter("./logs_1/", self.sess.graph)
            for epoch in range(param.n_epoch):
                images, labels = self.data(param.batch_size)
                loss,_,rs = self.sess.run([self.loss,self.optimizer,self.merged],feed_dict={self.train_data: images, self.train_label: labels})
                writer.add_summary(rs, epoch)
                if epoch % 50 == 1:
                    print('Iter: {}; loss: {:.10}'.format(epoch, loss))
                if (epoch + 21) % 100 == 1:
                    self.saver.save(self.sess, os.path.join(ckpt_dir, "unet.ckpt"))
                    self.test()
            self.saver.save(self.sess, os.path.join(ckpt_dir, "unet.ckpt"))
        def test(self):
            #test_image = glob.glob("./data/test/*.tif")
            test_images = np.zeros((1,512,512,1))
            for i in range(1):
                test_images[i,:,:,:] = np.array(Image.open("./data/test/"+str(i)+".tif")).reshape(512,512,1)/255.
            #saver = tf.train.Saver()
            #gpu_options = tf.GPUOptions(allow_growth=True)
            #self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 
            self.saver.restore(self.sess,"ckpt/unet.ckpt")
            #test_labels = self.unet(test_images,reuse = True)
            test_labels = self.sess.run(self.predict_label,feed_dict={self.train_data: test_images})
            for i in range(1):
                image = test_labels[i,:,:,:] * 255.
                testimage = image.reshape((512,512))
                testimage =testimage.astype(np.uint8)
                im = Image.fromarray(testimage)
                im.save("./data/test/label"+str(i)+".tif")
    if __name__ == '__main__':
    
        # constraint GPU
        #os.environ['CUDA_VISIBLE_DEVICES'] = '0'
      
        unet = U_net()
        data = DATA()
        u_train = U_net_train(unet,data)
        u_train.train("./data/model/",restore=False)
        u_train.test()
    View Code

     效果图

     

    踩过的坑,原论文中网络之后一层变成2个通道的没加,直接加上了输出通道效果一直不好,个人以为可能特征太多,没有转化为高级特征,所以造成不收敛效果不好的问题。

    因tensorboard的图太大,这里就截个一个tensorboard的局部图:

  • 相关阅读:
    dynamic 转换实体类
    泛型的简单使用
    winfrom嵌入word
    echart睡眠后台代码,
    echart实现睡眠前台代码
    Mysql时间加一天
    一道关于面向对象面试题所引发的血案(阿里)
    一道面试题让你彻底掌握JS中的EventLoop(头条)
    对象(数组)的深克隆和浅克隆(头条)
    BAT笔试题中几道关于堆栈内存和闭包作用域的题
  • 原文地址:https://www.cnblogs.com/yutingmoran/p/8631213.html
Copyright © 2020-2023  润新知