• hdu 1081 & poj 1050 To The Max(最大和的子矩阵)


    转载请注明出处:http://blog.csdn.net/u012860063


    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    Source


    题意:给你一个N*N的矩阵,求当中和最大的子矩阵的值!


    代码例如以下:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    int main()
    {
    	int i, j, k, t;
    	int a, sum, max, N, m[147][147];
    	while(~scanf("%d",&N))
    	{
    		memset(m,0,sizeof(m));
    		for(i = 1; i <= N; i++)
    		{
    			for(j = 1; j <= N; j++)
    			{
    				scanf("%d",&a);
    				m[i][j]+=m[i][j-1]+a;//表示第i行前j个数之和 
    			}
    		}
    		max = -128;
    		for(i = 1; i <= N; i++)//起始列 
    		{
    			for(j = i; j <= N; j++)//终止列 
    			{
    				sum = 0;
    				for(k = 1; k <= N; k++)//对每一行进行搜索 
    				{
    					if(sum < 0)
    					sum = 0;
    					sum+=m[k][j]-m[k][i-1];
    					//m[k][j]-m[k][i-1]表示第k行第i列之间的数 
    					if(sum > max)
    					max = sum;
    				}
    			}
    		}
    		printf("%d
    ",max);
    	}
    	return 0;
    }


  • 相关阅读:
    使用Eclipse 创建Spring Boot项目
    springMVC中文乱码问题
    Java POI Excel 导入导出
    springMVC + quartz实现定时器(任务调度器)
    spring配置Converter、Formatter日期转换器
    springMVC+springJDBC+Msql注解模式
    基于JavaScript封装的Ajax工具类
    H5音乐播放器
    JavaWeb+MySql分页封装
    JS如何判断是否为ie浏览器的方法(包括IE10、IE11在内)
  • 原文地址:https://www.cnblogs.com/yutingliuyl/p/7236232.html
Copyright © 2020-2023  润新知