1189. 扫雷游戏
中文English
让我们一起来玩扫雷游戏!
给定一个代表游戏板的二维字符矩阵。 'M' 代表一个未挖出的地雷,'E' 代表一个未挖出的空方块,'B' 代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X' 则表示一个已挖出的地雷。
现在给出在所有未挖出的方块中('M'或者'E')的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板:
- 如果一个地雷('M')被挖出,游戏就结束了- 把它改为 'X'。
- 如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的方块都应该被递归地揭露。
- 如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。
- 如果在此次点击中,若无更多方块可被揭露,则返回面板。
样例
样例 1:
输入: board = ["EEEEE","EEMEE","EEEEE","EEEEE"], Click : [3,0]
输出: ["B1E1B","B1M1B","B111B","BBBBB"]
样例 2:
输入: board = ["B1E1B","B1M1B", "B111B","BBBBB"], Click : [1,2]
输出: ["B1E1B","B1X1B","B111B","BBBBB"]
注意事项
1.输入矩阵的宽和高的范围为 [1,50]。
2.点击的位置只能是未被挖出的方块 ('M' 或者 'E'),这也意味着面板至少包含一个可点击的方块。
3.输入面板不会是游戏结束的状态(即有地雷已被挖出)。
4.简单起见,未提及的规则在这个问题中可被忽略。例如,当游戏结束时你不需要挖出所有地雷,考虑所有你可能赢得游戏或标记方块的情况。
BFS写法
class Solution: """ @param board: a board @param click: the position @return: the new board """ def updateBoard(self, board, click): # Write your code here #bfs写法,如果是数字或者是M的话,则说明是不能再挖下去。如果是B的话,则可以加入队列继续挖出 queue = [click] m, n = len(board), len(board[0]) result = self.bfs(board, queue, m, n) return result def bfs(self, board, queue, m, n): while queue: array = queue.pop() x, y = array[0], array[1] #否则的话 if board[x][y] == 'M': board[x] = board[x][: y] + 'X' + board[x][y + 1: ] continue #分情况考虑 if board[x][y] == 'E': res = self.isSatified(board, x, y, m, n) if res: board[x] = board[x][: y] + res + board[x][y + 1: ] else: board[x] = board[x][: y] + 'B' + board[x][y + 1: ] #只要是E就需要appeend directions = [[1, 0], [-1, 0], [0, 1], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]] for direction in directions: new_x, new_y = x + direction[0], y + direction[1] if new_x < 0 or new_x > m - 1 or new_y < 0 or new_y > n - 1: continue if board[new_x][new_y] == 'E': queue.append([new_x, new_y]) return board #判断四周是否是雷 def isSatified(self, board, x, y, m, n): directions = [[1, 0], [-1, 0], [0, 1], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]] count = 0 for direction in directions: x1, y1 = direction[0] + x, direction[1] + y if x1 < 0 or x1 > m - 1 or y1 < 0 or y1 > n - 1: continue #判断是否是雷 if board[x1][y1] == 'M': count += 1 return str(count) if count != 0 else False
DFS写法
#DFS写法 class Solution: """ @param board: a board @param click: the position @return: the new board """ def updateBoard(self, board, click): # Write your code here directions = [[1, 0], [-1, 0], [0, 1], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1], [0, 0]] m, n = len(board), len(board[0]) self.dfs(board, m, n, click[0], click[1], directions) return board def dfs(self, board, m, n, x, y, directions): #如果是M的话,直接返回即可 if board[x][y] == 'M': board[x] = board[x][: y] + 'X' + board[x][y + 1: ] return #如果是E的话, 需要判断周围存在多少个雷,如果是E则继续递归,否则continue for direction in directions: new_x, new_y = x + direction[0], y + direction[1] if 0 <= new_x < m and 0 <= new_y < n and board[new_x][new_y] == 'E': res = self.getAround(board, m, n, x, y, directions) if res: board[x] = board[x][: y] + res + board[x][y + 1: ] continue board[x] = board[x][: y] + 'B' + board[x][y + 1: ] self.dfs(board, m, n, new_x, new_y, directions) def getAround(self, board, m, n, x, y, directions): count = 0 for direction in directions: new_x, new_y = direction[0] + x, direction[1] + y if 0 <= new_x < m and 0 <= new_y < n and board[new_x][new_y] == 'M': count += 1 return str(count) if count else False
DFS(稍作调整)
#DFS写法 class Solution: """ @param board: a board @param click: the position @return: the new board """ def updateBoard(self, board, click): # Write your code here directions = [[1, 0], [-1, 0], [0, 1], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]] m, n = len(board), len(board[0]) self.dfs(board, m, n, click[0], click[1], directions) return board def dfs(self, board, m, n, x, y, directions): #如果是M的话,直接返回即可 if board[x][y] == 'M': board[x] = board[x][: y] + 'X' + board[x][y + 1: ] return res = self.getAround(board, m, n, x, y, directions) if res: board[x] = board[x][: y] + res + board[x][y + 1: ] else: board[x] = board[x][: y] + 'B' + board[x][y + 1: ] #如果不是数字的话,则说明可以继续四周递归下去, res是计算四周雷的个数 for direction in directions: new_x, new_y = x + direction[0], y + direction[1] if 0 <= new_x < m and 0 <= new_y < n and board[new_x][new_y] == 'E': self.dfs(board, m, n, new_x, new_y, directions) def getAround(self, board, m, n, x, y, directions): count = 0 for direction in directions: new_x, new_y = direction[0] + x, direction[1] + y if 0 <= new_x < m and 0 <= new_y < n and board[new_x][new_y] == 'M': count += 1 return str(count) if count else False