• tensorflow 单个变量添加正则化、所有变量添加正则化


    单个变量添加正则化

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次的大小
    batch_size = 64
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    keep_prob=tf.placeholder(tf.float32)
    
    # 784-1000-500-10
    #创建一个简单的神经网络
    W1 = tf.Variable(tf.truncated_normal([784,1000],stddev=0.1))
    b1 = tf.Variable(tf.zeros([1000])+0.1)
    L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
    L1_drop = tf.nn.dropout(L1,keep_prob) 
    
    W2 = tf.Variable(tf.truncated_normal([1000,500],stddev=0.1))
    b2 = tf.Variable(tf.zeros([500])+0.1)
    L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
    L2_drop = tf.nn.dropout(L2,keep_prob) 
    
    W3 = tf.Variable(tf.truncated_normal([500,10],stddev=0.1))
    b3 = tf.Variable(tf.zeros([10])+0.1)
    prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3)
    
    #正则项
    l2_loss = tf.nn.l2_loss(W1) + tf.nn.l2_loss(b1) + tf.nn.l2_loss(W2) + tf.nn.l2_loss(b2) + tf.nn.l2_loss(W3) + tf.nn.l2_loss(b3)
    
    #交叉熵
    loss = tf.losses.softmax_cross_entropy(y,prediction) + 0.0005*l2_loss
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(31):
            for batch in range(n_batch):
                batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
            
            test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
            train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
            print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) +",Training Accuracy " + str(train_acc))

    添加所有变量的正则化

    reg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    tf.add_n([loss]+reg)
  • 相关阅读:
    数值的格式化
    最近开发的一个多功能选择器
    OCI22053: 溢出错误的原因和解决方法
    js的四舍五入问题
    Vista 下先安装 VS 再装 IIS 7 运行出现 500.19 Error 的解决方法
    最近开发的一个多功能选择器2
    Oracle REF Cursor 用法(转帖)
    Oracle 查询历史数据(转帖)
    HDU 1203 I NEED A OFFER! 动态规划(01背包)
    HDU 1160 FatMouse's Speed 动态规划
  • 原文地址:https://www.cnblogs.com/yunshangyue71/p/13611292.html
Copyright © 2020-2023  润新知