• keras例子迁移学习VGG16


    from keras.applications.vgg16 import VGG16
    from keras.models import Sequential
    from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
    from keras.optimizers import SGD
    from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
    import numpy as np
    
    vgg16_model = VGG16(weights='imagenet',include_top=False, input_shape=(150,150,3))
    #keras提供了几种VGG16的模型,imagenet表示,这个模型是用imagenet数据集训练的。
    #include_top:顶层去掉了。不包含全连接层
    #input_shape=输入数据的形状
    
    # 搭建全连接层
    top_model = Sequential()
    top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
    top_model.add(Dense(256,activation='relu'))
    top_model.add(Dropout(0.5))
    top_model.add(Dense(2,activation='softmax'))
    
    model = Sequential()
    model.add(vgg16_model)
    model.add(top_model)
    
    train_datagen = ImageDataGenerator(
        rotation_range = 40,     # 随机旋转度数
        width_shift_range = 0.2, # 随机水平平移
        height_shift_range = 0.2,# 随机竖直平移
        rescale = 1/255,         # 数据归一化
        shear_range = 20,       # 随机错切变换
        zoom_range = 0.2,        # 随机放大
        horizontal_flip = True,  # 水平翻转
        fill_mode = 'nearest',   # 填充方式
    ) 
    test_datagen = ImageDataGenerator(
        rescale = 1/255,         # 数据归一化
    ) 
    
    batch_size = 32
    
    # 生成训练数据
    train_generator = train_datagen.flow_from_directory(
        'image/train',
        target_size=(150,150),
        batch_size=batch_size,
        )
    
    # 测试数据
    test_generator = test_datagen.flow_from_directory(
        'image/test',
        target_size=(150,150),
        batch_size=batch_size,
        )
        
    #train_generator.class_indices#打印类别
    
    # 定义优化器,代价函数,训练过程中计算准确率
    model.compile(optimizer=SGD(lr=1e-4,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])
    
    model.fit_generator(train_generator,steps_per_epoch=len(train_generator),epochs=20,validation_data=test_generator,validation_steps=len(test_generator))
    
    model.save('model_vgg16.h5')
    
    #进行预测
    from keras.models import load_model
    import numpy as np
    
    label = np.array(['cat','dog'])
    # 载入模型
    model = load_model('model_vgg16.h5')
    
    # 导入图片
    image = load_img('image/test/cat/cat.1003.jpg')
    image
    
    image = image.resize((150,150))
    image = img_to_array(image)
    image = image/255
    image = np.expand_dims(image,0)
    image.shape
    
    print(label[model.predict_classes(image)])

  • 相关阅读:
    Spring boot 使用多个RedisTemplate
    Spring boot 连接Redis实现HMSET操作
    Spring boot 工具类静态属性注入及多环境配置
    向量空间模型(Vector Space Model)的理解
    双数组Trie树中叶子结点check[t]=t的证明
    谈谈我对隐马尔可夫模型的理解
    Information Retrieval 倒排索引 学习笔记
    朴素贝叶斯文本分类简单介绍
    Python Thrift 简单示例
    迭代器模式(Iterator)
  • 原文地址:https://www.cnblogs.com/yunshangyue71/p/13584447.html
Copyright © 2020-2023  润新知