from keras.applications.vgg16 import VGG16 from keras.models import Sequential from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img import numpy as np vgg16_model = VGG16(weights='imagenet',include_top=False, input_shape=(150,150,3)) #keras提供了几种VGG16的模型,imagenet表示,这个模型是用imagenet数据集训练的。 #include_top:顶层去掉了。不包含全连接层 #input_shape=输入数据的形状 # 搭建全连接层 top_model = Sequential() top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:])) top_model.add(Dense(256,activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(2,activation='softmax')) model = Sequential() model.add(vgg16_model) model.add(top_model) train_datagen = ImageDataGenerator( rotation_range = 40, # 随机旋转度数 width_shift_range = 0.2, # 随机水平平移 height_shift_range = 0.2,# 随机竖直平移 rescale = 1/255, # 数据归一化 shear_range = 20, # 随机错切变换 zoom_range = 0.2, # 随机放大 horizontal_flip = True, # 水平翻转 fill_mode = 'nearest', # 填充方式 ) test_datagen = ImageDataGenerator( rescale = 1/255, # 数据归一化 ) batch_size = 32 # 生成训练数据 train_generator = train_datagen.flow_from_directory( 'image/train', target_size=(150,150), batch_size=batch_size, ) # 测试数据 test_generator = test_datagen.flow_from_directory( 'image/test', target_size=(150,150), batch_size=batch_size, ) #train_generator.class_indices#打印类别 # 定义优化器,代价函数,训练过程中计算准确率 model.compile(optimizer=SGD(lr=1e-4,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy']) model.fit_generator(train_generator,steps_per_epoch=len(train_generator),epochs=20,validation_data=test_generator,validation_steps=len(test_generator)) model.save('model_vgg16.h5') #进行预测 from keras.models import load_model import numpy as np label = np.array(['cat','dog']) # 载入模型 model = load_model('model_vgg16.h5') # 导入图片 image = load_img('image/test/cat/cat.1003.jpg') image image = image.resize((150,150)) image = img_to_array(image) image = image/255 image = np.expand_dims(image,0) image.shape print(label[model.predict_classes(image)])