Java排序算法
1)分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(箱排序、基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
1)选择排序算法的时候
1.数据的规模 ; 2.数据的类型 ; 3.数据已有的顺序
一般来说,当数据规模较小时,应选择直接插入排序或冒泡排序。任何排序算法在数据量小时基本体现不出来差距。 考虑数据的类型,比如如果全部是正整数,那么考虑使用桶排序为最优。 考虑数据已有顺序,快排是一种不稳定的排序(当然可以改进),对于大部分排好的数据,快排会浪费大量不必要的步骤。数据量极小,而起已经基本排好序,冒泡是最佳选择。我们说快排好,是指大量随机数据下,快排效果最理想。而不是所有情况。
3)总结:
——按平均的时间性能来分:
1)时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;
2)时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为最好,特 别是对那些对关键字近似有序的记录序列尤为如此;
3)时间复杂度为O(n)的排序方法只有,基数排序。
当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。
——按平均的空间性能来分(指的是排序过程中所需的辅助空间大小):
1) 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1);
2) 快速排序为O(logn ),为栈所需的辅助空间;
3) 归并排序所需辅助空间最多,其空间复杂度为O(n );
4)链式基数排序需附设队列首尾指针,则空间复杂度为O(rd )。
——排序方法的稳定性能:
1) 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和 经过排序之后,没有改变。
2) 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。
3) 对于不稳定的排序方法,只要能举出一个实例说明即可。
4) 快速排序,希尔排序和堆排序是不稳定的排序方法。
4)插入排序:
包括直接插入排序,希尔插入排序。
直接插入排序: 将一个记录插入到已经排序好的有序表中。
1, sorted数组的第0个位置没有放数据。
2,从sorted第二个数据开始处理:
如果该数据比它前面的数据要小,说明该数据要往前面移动。
首先将该数据备份放到 sorted的第0位置当哨兵。
然后将该数据前面那个数据后移。
然后往前搜索,找插入位置。
找到插入位置之后讲 第0位置的那个数据插入对应位置。
O(n*n), 当待排记录序列为正序时,时间复杂度提高至O(n)。
希尔排序(缩小增量排序 diminishing increment sort):先将整个待排记录序列分割成若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。
插入排序Java代码:
public class InsertionSort {
// 插入排序:直接插入排序 ,希尔排序
public void straightInsertionSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=2;j<sortedLen;j++){
if(sorted[j]<sorted[j-1]){
sorted[0]= sorted[j];//先保存一下后面的那个
sorted[j]=sorted[j-1];// 前面的那个后移。
int insertPos=0;
for(int k=j-2;k>=0;k--){
if(sorted[k]>sorted[0]){
sorted[k+1]=sorted[k];
}else{
insertPos=k+1;
break;
}
}
sorted[insertPos]=sorted[0];
}
}
}
public void shellInertionSort(double [] sorted, int inc){
int sortedLen= sorted.length;
for(int j=inc+1;j<sortedLen;j++ ){
if(sorted[j]<sorted[j-inc]){
sorted[0]= sorted[j];//先保存一下后面的那个
int insertPos=j;
for(int k=j-inc;k>=0;k-=inc){
if(sorted[k]>sorted[0]){
sorted[k+inc]=sorted[k];
//数据结构课本上这个地方没有给出判读,出错:
if(k-inc<=0){
insertPos = k;
}
}else{
insertPos=k+inc;
break;
}
}
sorted[insertPos]=sorted[0];
}
}
}
public void shellInsertionSort(double [] sorted){
int[] incs={7,5,3,1};
int num= incs.length;
int inc=0;
for(int j=0;j<num;j++){
inc= incs[j];
shellInertionSort(sorted,inc);
}
}
public static void main(String[] args) {
Random random= new Random(6);
int arraysize= 21;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;j<arraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();
InsertionSort sorter=new InsertionSort();
// sorter.straightInsertionSort(sorted);
sorter.shellInsertionSort(sorted);
System.out.print("After Sort:");
for(int j=1;j<sorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
5)交换排序:
包括冒泡排序,快速排序。
冒泡排序法:该算法是专门针对已部分排序的数据进行排序的一种排序算法。如果在你的数据清单中只有一两个数据是乱序的话,用这种算法就是最快的排序算法。如果你的数据清单中的数据是随机排列的,那么这种方法就成了最慢的算法了。因此在使用这种算法之前一定要慎重。这种算法的核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。
快速排序:通过一趟排序,将待排序记录分割成独立的两个部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。具体做法是:使用两个指针low,high, 初值分别设置为序列的头,和序列的尾,设置pivotkey为第一个记录,首先从high开始向前搜索第一个小于pivotkey的记录和pivotkey所在位置进行交换,然后从low开始向后搜索第一个大于pivotkey的记录和此时pivotkey所在位置进行交换,重复知道low=high了为止。
交换排序Java代码:
public class ExchangeSort {
public void BubbleExchangeSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=sortedLen;j>0;j--){
int end= j;
for(int k=1;k<end-1;k++){
double tempB= sorted[k];
sorted[k]= sorted[k]<sorted[k+1]?
sorted[k]:sorted[k+1];
if(Math.abs(sorted[k]-tempB)>10e-6){
sorted[k+1]=tempB;
}
}
}
}
public void QuickExchangeSortBackTrack(double [] sorted,
int low,int high){
if(low<high){
int pivot= findPivot(sorted,low,high);
QuickExchangeSortBackTrack(sorted,low,pivot-1);
QuickExchangeSortBackTrack(sorted,pivot+1,high);
}
}
public int findPivot(double [] sorted, int low, int high){
sorted[0]= sorted[low];
while(low<high){
while(low<high && sorted[high]>= sorted[0])--high;
sorted[low]= sorted[high];
while(low<high && sorted[low]<=sorted[0])++low;
sorted[high]= sorted[low];
}
sorted[low]=sorted[0];
return low;
}
public static void main(String[] args) {
Random random= new Random(6);
int arraysize= 21;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;j<arraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();
ExchangeSort sorter=new ExchangeSort();
// sorter.BubbleExchangeSort(sorted);
sorter.QuickExchangeSortBackTrack(sorted, 1, arraysize-1);
System.out.print("After Sort:");
for(int j=1;j<sorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
6)选择排序:
分为直接选择排序, 堆排序
直接选择排序:第i次选取 i到array.Length-1中间最小的值放在i位置。
堆排序:首先,数组里面用层次遍历的顺序放一棵完全二叉树。从最后一个非终端结点往前面调整,直到到达根结点,这个时候除根节点以外的所有非终端节点都已经满足堆得条件了,于是需要调整根节点使得整个树满足堆得条件,于是从根节点开始,沿着它的儿子们往下面走(最大堆沿着最大的儿子走,最小堆沿着最小的儿子走)。 主程序里面,首先从最后一个非终端节点开始调整到根也调整完,形成一个heap, 然后将heap的根放到后面去(即:每次的树大小会变化,但是 root都是在1的位置,以方便计算儿子们的index,所以如果需要升序排列,则要逐步大顶堆。因为根节点被一个个放在后面去了。 降序排列则要建立小顶堆)
代码中的问题: 有时候第2个和第3个顺序不对(原因还没搞明白到底代码哪里有错)
选择排序Java代码:
public class SelectionSort {
public void straitSelectionSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=1;j<sortedLen;j++){
int jMin= getMinIndex(sorted,j);
exchange(sorted,j,jMin);
}
}
public void exchange(double [] sorted,int i,int j){
int sortedLen= sorted.length;
if(i<sortedLen && j<sortedLen && i<j && i>=0 && j>=0){
double temp= sorted[i];
sorted[i]=sorted[j];
sorted[j]=temp;
}
}
public int getMinIndex(double [] sorted, int i){
int sortedLen= sorted.length;
int minJ=1;
double min= Double.MAX_VALUE;
for(int j=i;j<sortedLen;j++){
if(sorted[j]<min){
min= sorted[j];
minJ= j;
}
}
return minJ;
}
public void heapAdjust(double [] sorted,int start,int end){
if(start<end){
double temp= sorted[start];
// 这个地方j<end与课本不同,j<=end会报错:
for(int j=2*start;j<end;j *=2){
if(j+1<end && sorted[j]-sorted[j+1]>10e-6){
++j;
}
if(temp<=sorted[j]){
break;
}
sorted[start]=sorted[j];
start=j;
}
sorted[start]=temp;
}
}
public void heapSelectionSort(double [] sorted){
int sortedLen = sorted.length;
for(int i=sortedLen/2;i>0;i--){
heapAdjust(sorted,i,sortedLen);
}
for(int i=sortedLen;i>1;--i){
exchange(sorted,1,i);
heapAdjust(sorted,1,i-1);
}
}
public static void main(String [] args){
Random random= new Random(6);
int arraysize=9;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;j<arraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();
SelectionSort sorter=new SelectionSort();
// sorter.straitSelectionSort(sorted);
sorter.heapSelectionSort(sorted);
System.out.print("After Sort:");
for(int j=1;j<sorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
7)归并排序:
将两个或两个以上的有序表组合成一个新的有序表。归并排序要使用一个辅助数组,大小跟原数组相同,递归做法。每次将目标序列分解成两个序列,分别排序两个子序列之后,再将两个排序好的子序列merge到一起。
归并排序Java代码:
public class MergeSort {
private double[] bridge;//辅助数组
public void sort(double[] obj){
if (obj == null){
throw new NullPointerException("
The param can not be null!");
}
bridge = new double[obj.length]; // 初始化中间数组
mergeSort(obj, 0, obj.length - 1); // 归并排序
bridge = null;
}
private void mergeSort(double[] obj, int left, int right){
if (left < right){
int center = (left + right) / 2;
mergeSort(obj, left, center);
mergeSort(obj, center + 1, right);
merge(obj, left, center, right);
}
}
private void merge(double[] obj, int left,
int center, int right){
int mid = center + 1;
int third = left;
int tmp = left;
while (left <= center && mid <= right){
// 从两个数组中取出小的放入中间数组
if (obj[left]-obj[mid]<=10e-6){
bridge[third++] = obj[left++];
} else{
bridge[third++] = obj[mid++];
}
}
// 剩余部分依次置入中间数组
while (mid <= right){
bridge[third++] = obj[mid++];
}
while (left <= center){
bridge[third++] = obj[left++];
}
// 将中间数组的内容拷贝回原数组
copy(obj, tmp, right);
}
private void copy(double[] obj, int left, int right)
{
while (left <= right){
obj[left] = bridge[left];
left++;
}
}
public static void main(String[] args) {
Random random = new Random(6);
int arraysize = 10;
double[] sorted = new double[arraysize];
System.out.print("Before Sort:");
for (int j = 0; j < arraysize; j++) {
sorted[j] = (int) (random.nextDouble() * 100);
System.out.print((int) sorted[j] + " ");
}
System.out.println();
MergeSort sorter = new MergeSort();
sorter.sort(sorted);
System.out.print("After Sort:");
for (int j = 0; j < sorted.length; j++) {
System.out.print((int) sorted[j] + " ");
}
System.out.println();
}
}
8)基数排序:
使用10个辅助队列,假设最大数的数字位数为 x, 则一共做 x次,从个位数开始往前,以第i位数字的大小为依据,将数据放进辅助队列,搞定之后回收。下次再以高一位开始的数字位为依据。
以Vector作辅助队列,基数排序的Java代码:
public class RadixSort {
private int keyNum=-1;
private Vector<Vector<Double>> util;
public void distribute(double [] sorted, int nth){
if(nth<=keyNum && nth>0){
util=new Vector<Vector<Double>>();
for(int j=0;j<10;j++){
Vector <Double> temp= new Vector <Double>();
util.add(temp);
}
for(int j=0;j<sorted.length;j++){
int index= getNthDigit(sorted[j],nth);
util.get(index).add(sorted[j]);
}
}
}
public int getNthDigit(double num,int nth){
String nn= Integer.toString((int)num);
int len= nn.length();
if(len>=nth){
return Character.getNumericValue(nn.charAt(len-nth));
}else{
return 0;
}
}
public void collect(double [] sorted){
int k=0;
for(int j=0;j<10;j++){
int len= util.get(j).size();
if(len>0){
for(int i=0;i<len;i++){
sorted[k++]= util.get(j).get(i);
}
}
}
util=null;
}
public int getKeyNum(double [] sorted){
double max= Double.MIN_VALUE;
for(int j=0;j<sorted.length;j++){
if(sorted[j]>max){
max= sorted[j];
}
}
return Integer.toString((int)max).length();
}
public void radixSort(double [] sorted){
if(keyNum==-1){
keyNum= getKeyNum(sorted);
}
for(int i=1;i<=keyNum;i++){
distribute(sorted,i);
collect(sorted);
}
}
public static void main(String[] args) {
Random random = new Random(6);
int arraysize = 21;
double[] sorted = new double[arraysize];
System.out.print("Before Sort:");
for (int j = 0; j < arraysize; j++) {
sorted[j] = (int) (random.nextDouble() * 100);
System.out.print((int) sorted[j] + " ");
}
System.out.println();
RadixSort sorter = new RadixSort();
sorter.radixSort(sorted);
System.out.print("After Sort:");
for (int j = 0; j < sorted.length; j++) {
System.out.print((int) sorted[j] + " ");
}
System.out.println();
}
}
=====》总结:上述Java代码中,基本上用的都是double数组,如果想要应用其他的数组,只需要将double数组改成 Comparable接口数组,凡是实现了Comparable接口的都可以用。而在C++中,是用模板类来解决这个问题。