linux查看进程使用最多的命令应该是top命令了吧,我们今天主要说明一下,top命令结果中各参数的意义,top命令结果如下:
直观上结果分为上下两部分,上部分主要是系统的信息,下部分是系统进程信息,下面详细说明一下:
第一行代表了系统运行时间,分别表示:
系统时间,系统运行到现在的时间,当前登陆系统的用户数、系统平均负载的三个值,分别是5分钟、10分钟、15分钟。
tip:说明一下什么是系统负载,一般负载值越小越好,值也高说明系统的可能是出现了某种问题的信息,但是也并不是绝对的
借用网友的文章说明一下:https://www.cnblogs.com/TaleG/p/6030992.html
一只单核的处理器可以形象得比喻成一条单车道,数字在0-1之间算正常,这样来一辆车,该车不会等待直接通过;
0表示路上没有车
1.00 表示道路还算正常,但有可能会恶化并造成拥堵。此时系统已经没有多余的资源了,管理员需要进行优化;
1.00-*** 表示路况不太好了,如果到达2.00表示有桥上车辆一倍数目的车辆正在等待。这种情况你必须进行检查了
如果我们有两条行车道呢?
满负荷状态的数字为 "1.00 * CPU核数",即双核CPU为2.00,四核CPU为4.00
SO:
单核负载在0.7以下是安全的,超过0.7就需要进行优化了
那应该看那个参数??
看5分钟和15分钟的比较好,即后面2个数字。
CPU的核数如何获取呢??
grep 'model name' /proc/cpuinfo | wc -l
CPU核心数目N,观察后面2个数字,用数字/N,如果得到的值小于0.7即可无忧
上一张字段说明图:
说明了第一行,第二行啥意思?
其实一眼就应该看出来,应该是系统进程数,第一列表示系统总进程数其次是运行进程、休眠进程、停止进程和僵尸进程
之后是系统CPU运行时间,“用户空间占用CPU百分比”、“内核空间占用CPU百分比”、“用户空间内改变过优先级的进程占用CPU百分比”、“空闲CPU百分比”、“等待输入输出CPU时间百分比”、“CPU服务于硬件中断所耗费的时间总额”、“CPU服务软中断所耗费的时间总额”、“Steal Time”
那么CPU各个参数都代表了什么意思呢?
看看那官方解释:
us: user cpu time (or) % CPU time spent in user space sy: system cpu time (or) % CPU time spent in kernel space ni: user nice cpu time (or) % CPU time spent on low priority processes id: idle cpu time (or) % CPU time spent idle wa: io wait cpu time (or) % CPU time spent in wait (on disk) hi: hardware irq (or) % CPU time spent servicing/handling hardware interrupts si: software irq (or) % CPU time spent servicing/handling software interrupts st: steal time - - % CPU time in involuntary wait by virtual cpu while hypervisor is servicing another processor (or) % CPU time stolen from a virtual machine
简单翻译一下:
us:用户态使用的cpu时间比
sy:系统态使用的cpu时间比
ni:用做nice加权的进程分配的用户态cpu时间比
id:空闲的cpu时间比
wa:cpu等待磁盘写入完成时间
hi:硬中断消耗时间
si:软中断消耗时间
st:虚拟机偷取时间
然并卵,还是不懂:
我们还是看看CPU的百分比是如何计算的吧:
比如一秒内有100个cpu时间片,这个cpu时间片就是cpu工作的最小单位。那么这100个cpu时间片在不同的区域和目的进行操作使用,就代表这个区域所占用的cpu时间比。也就是这里得出的cpu时间百分比,比如
将文件从磁盘的src位置拷贝到磁盘的dst位置。文件会从src先读取进入到内核空间,然后再读取到用户空间,然后拷贝数据到用户空间的buf上,再通过用户空间,内核空间,数据才到磁盘的dst上
所以从上面这个程序来看,cpu消耗在kernel space的时候就是sy(系统态使用的cpu百分比),cpu消耗在user space的时候就是us(用户态使用的cpu百分比)。そうか
弄明白了前两个,在说说hi和si两个参数
如果程序都没什么问题,那么是没有hi和si的,但是实际上有个硬中断和软中断的概念。比如硬中断,cpu在执行程序的时候,突然外设硬件(比如硬盘出现问题了)机器需要立刻通知cpu进行现场保存工作。这个时候会cpu会出现上下文切换。就是cpu会有一部分时间会被硬中断占用了,这个时间就是hi。相类似,si是软中断的cpu占用时间,软中断是由软件的指令方式触发的。
相关软中断和硬中断的概念可以参考:
http://blog.csdn.net/pxz_002/article/details/7327668
下面是nice参数
ni是nice的意思,nice是什么呢,每个linux进程都有个优先级,优先级高的进程有优先执行的权利,这个叫做pri。进程除了优先级外,还有个优先级的修正值。即比如你原先的优先级是20,然后修正值为-2,那么你最后的进程优先级为18。这个修正值就叫做进程的nice值。
那么问题来了,修改值是一个数字,怎么会占用系统时间呢???
ni是指用做nice加权的进程使用的用户态cpu时间比,我的理解就是一个进程的所谓修正值就意味着多分配一些cpu时间给这个进程的用户态,这个中间所多分配的cpu时间就是我们这里的ni。(这个理解没啥把握,如果有错误麻烦帮忙指出下)
wa什么东西??
wa指的是CPU等待磁盘写入完成的时间,就是说前提是要进行IO操作,在进行IO操作的时候,CPU等待时间。比如上面那个程序,最后一步,从系统空间到dst硬盘空间的时候,如果程序是阻塞的,那么这个时候cpu就要等待数据写入磁盘才能完成写操作了。所以这个时候cpu等待的时间就是wa。
st:
st的名字很生动,偷取。。。是专门对虚拟机来说的,一台物理是可以虚拟化出几台虚拟机的。在其中一台虚拟机上用top查看发现st不为0,就说明本来有这么多个cpu时间是安排给我这个虚拟机的,但是由于某种虚拟技术,把这个cpu时间分配给了其他的虚拟机了。这就叫做偷取。
剩下的id就是除了上面那么多cpu处理上下文以外的cpu时间片。当然在这些时间片上,cpu是空闲的。
之后是内存:
第五行是交换分区:
最后是进程信息:
进程信息,说明一下进程状态:Linux是多用户系统,会产生很多进程,进程有各自的各种状态
TASK_RUNNING(R):允许状态,只有在该状态的进程才可能在CPU上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行,很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在linux下统一为 TASK_RUNNING状态
TASK_INTERRUPTIBLE(S):可中断的睡眠状态,
处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。
通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于TASK_INTERRUPTIBLE状态(除非机器的负载很高)。毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。
TASK_UNINTERRUPTIBLE(D):不可中断睡眠状态:
与TASK_INTERRUPTIBLE状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是CPU不响应外部硬件的中断,而是指进程不响应异步信号。
绝大多数情况下,进程处在睡眠状态时,总是应该能够响应异步信号的。否则你将惊奇的发现,kill -9竟然杀不死一个正在睡眠的进程了!于是我们也很好理解,为什么ps命令看到的进程几乎不会出现TASK_UNINTERRUPTIBLE状态,而总是TASK_INTERRUPTIBLE状态。
而TASK_UNINTERRUPTIBLE状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态),于是原有的流程就被中断了。(参见《linux内核异步中断浅析》)
在进程对某些硬件进行操作时(比如进程调用read系统调用对某个设备文件进行读操作,而read系统调用最终执行到对应设备驱动的代码,并与对应的物理设备进行交互),可能需要使用TASK_UNINTERRUPTIBLE状态对进程进行保护,以避免进程与设备交互的过程被打断,造成设备陷入不可控的状态。这种情况下的TASK_UNINTERRUPTIBLE状态总是非常短暂的,通过ps命令基本上不可能捕捉到
咱们再讨论下进程内存的三个参数。虚拟内存、物理内存、共享内存
【虚拟内存】
首先需要强调的是虚拟内存不同于物理内存,虽然两者都包含内存字眼但是它们属于两个不同层面的概念。进程占用虚拟内存空间大并非意味着程序的物理内存也一定占用很大。虚拟内存是操作系统内核为了对进程地址空间进行管理(process address space management)而精心设计的一个逻辑意义上的内存空间概念。我们程序中的指针其实都是这个虚拟内存空间中的地址。比如我们在写完一段C++程序之后都需要采用g++进行编译,这时候编译器采用的地址其实就是虚拟内存空间的地址。因为这时候程序还没有运行,何谈物理内存空间地址?凡是程序运行过程中可能需要用到的指令或者数据都必须在虚拟内存空间中。既然说虚拟内存是一个逻辑意义上(假象的)的内存空间,为了能够让程序在物理机器上运行,那么必须有一套机制可以让这些假象的虚拟内存空间映射到物理内存空间(实实在在的RAM内存条上的空间)。这其实就是操作系统中页映射表(page table)所做的事情了。内核会为系统中每一个进程维护一份相互独立的页映射表。。页映射表的基本原理是将程序运行过程中需要访问的一段虚拟内存空间通过页映射表映射到一段物理内存空间上,这样CPU访问对应虚拟内存地址的时候就可以通过这种查找页映射表的机制访问物理内存上的某个对应的地址。“页(page)”是虚拟内存空间向物理内存空间映射的基本单元。
【驻留内存】
驻留内存,顾名思义是指那些被映射到进程虚拟内存空间的物理内存。上图1中,在系统物理内存空间中被着色的部分都是驻留内存。比如,A1、A2、A3和A4是进程A的驻留内存;B1、B2和B3是进程B的驻留内存。进程的驻留内存就是进程实实在在占用的物理内存。一般我们所讲的进程占用了多少内存,其实就是说的占用了多少驻留内存而不是多少虚拟内存。因为虚拟内存大并不意味着占用的物理内存大。
关于虚拟内存和驻留内存这两个概念我们说到这里。下面一部分我们来看看top命令中VIRT、RES和SHR分别代表什么意思。
搞清楚了虚拟内存的概念之后解释VIRT的含义就很简单了。VIRT表示的是进程虚拟内存空间大小。对应到图1中的进程A来说就是A1、A2、A3、A4以及灰色部分所有空间的总和。也就是说VIRT包含了在已经映射到物理内存空间的部分和尚未映射到物理内存空间的部分总和。
RES的含义是指进程虚拟内存空间中已经映射到物理内存空间的那部分的大小。对应到图1中的进程A来说就是A1、A2、A3以及A4几个部分空间的总和。所以说,看进程在运行过程中占用了多少内存应该看RES的值而不是VIRT的值
最后来看看SHR所表示的含义。SHR是share(共享)的缩写,它表示的是进程占用的共享内存大小。在上图1中我们看到进程A虚拟内存空间中的A4和进程B虚拟内存空间中的B3都映射到了物理内存空间的A4/B3部分。咋一看很奇怪。为什么会出现这样的情况呢?其实我们写的程序会依赖于很多外部的动态库(.so),比如libc.so、libld.so等等。这些动态库在内存中仅仅会保存/映射一份,如果某个进程运行时需要这个动态库,那么动态加载器会将这块内存映射到对应进程的虚拟内存空间中。多个进展之间通过共享内存的方式相互通信也会出现这样的情况。这么一来,就会出现不同进程的虚拟内存空间会映射到相同的物理内存空间。这部分物理内存空间其实是被多个进程所共享的,所以我们将他们称为共享内存,用SHR来表示。某个进程占用的内存除了和别的进程共享的内存之外就是自己的独占内存了。所以要计算进程独占内存的大小只要用RES的值减去SHR值即可。
top对内存查看只能到该层次,如果想知道程序中对内存是如何使用则需要访问进程的smaps文件,该文件详细记录了当前进程内存的详细使用情况
查看命令是:cat /proc/进程的pid/smaps
通过top命令我们已经能看出进程的虚拟空间大小(VIRT)、占用的物理内存(RES)以及和其他进程共享的内存(SHR)。但是仅此而已,如果我想知道如下问题:
- 进程的虚拟内存空间的分布情况,比如heap占用了多少空间、文件映射(mmap)占用了多少空间、stack占用了多少空间?
- 进程是否有被交换到swap空间的内存,如果有,被交换出去的大小?
- mmap方式打开的数据文件有多少页在内存中是脏页(dirty page)没有被写回到磁盘的?
- mmap方式打开的数据文件当前有多少页面已经在内存中,有多少页面还在磁盘中没有加载到page cahe中?
- 等等
以上这些问题都无法通过top命令给出答案,但是有时候这些问题正是我们在对程序进行性能瓶颈分析和优化时所需要回答的问题。所幸的是,世界上解决问题的方法总比问题本身要多得多。linux通过proc文件系统为每个进程都提供了一个smaps文件,通过分析该文件我们就可以一一回答以上提出的问题。
在smaps文件中,每一条记录(如下图2所示)表示进程虚拟内存空间中一块连续的区域。其中第一行从左到右依次表示地址范围、权限标识、映射文件偏移、设备号、inode、文件路径。详细解释可以参见understanding-linux-proc-id-maps。
接下来8个字段的含义分别如下:
- Size:表示该映射区域在虚拟内存空间中的大小。
- Rss:表示该映射区域当前在物理内存中占用了多少空间。
- Shared_Clean:和其他进程共享的未被改写的page的大小。
- Shared_Dirty: 和其他进程共享的被改写的page的大小。
- Private_Clean:未被改写的私有页面的大小。
- Swap:表示非mmap内存(也叫anonymous memory,比如malloc动态分配出来的内存)由于物理内存不足被swap到交换空间的大小。
- Pss:该虚拟内存区域平摊计算后使用的物理内存大小(有些内存会和其他进程共享,例如mmap进来的)。比如该区域所映射的物理内存部分同时也被另一个进程映射了,且该部分物理内存的大小为1000KB,那么该进程分摊其中一半的内存,即Pss=500KB。
应用博文:http://blog.csdn.net/rebirthme/article/details/50402082