• POJ 1458 Common Subsequence(最长公共子序列)


    题目链接
    Time Limit: 1000MS Memory Limit: 10000K Total Submissions:
    67653 Accepted: 28245

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    中文题目:

    给出两个字符串,求出这样一个最长的公共子序列的长度——子序列的每个字符都能在两个原串中找到,且每个字符的先后顺序和原串中的先后顺序一致

    解题思路:

    步骤1-找子问题:将原问题可以分解为求s1左边i个字符的子串和s2左边j个字符子串的最长公共子序列。

    步骤2-确定状态:MaxLen(i,j)表示上述最长公共子序列的长度,即为本题的状态。

    步骤3-确定状态转移方程:

    • MaxLen(n,0)=0, MaxLen(0,m)=0 (n=0,1,2...len1, m=1,2...len2)
    • if(s1[i-1]==s2[j-1]) MaxLen(i,j) = MaxLen(i-1,j-1)+1;
    • else MaxLen(i,j) = Max(MaxLen(i,j-1), ManLen(i-1,j));

    重点在于状态转移方程的书写,这一题讲义PPT中画的图很好,言简意赅,我一开始想的是计算s2中以xk为终点的字串在s1中的公共子序列,但是发现自己对题意的理解有误,子串中的各字母是可以隔开的,因此逐个字符比较是最好的。既然是逐个字符相比较,那么自然也要考虑s1的位置。

    AC代码:

    #include<iostream>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    
    char s1[1000];
    char s2[1000];
    int maxLen[1000][1000];
    
    int main()
    {
        while (cin >> s1 >> s2)
        {
            int length1 = strlen(s1);
            int length2 = strlen(s2);
            for (int i = 0; i <= length1; i++)
                maxLen[i][0] = 0;
            for (int j = 0; j <= length2; j++)
                maxLen[0][j] = 0;
            for (int i = 1; i <= length1; i++)
            {
                for (int j = 1; j <= length2; j++)
                {
                    if (s1[i - 1] == s2[j - 1])
                        maxLen[i][j] = maxLen[i - 1][j - 1] + 1;
                    else
                        maxLen[i][j] = max(maxLen[i - 1][j], maxLen[i][j - 1]);
                }
            }
            cout << maxLen[length1][length2] << endl;
        }
        return 0;
    }
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int N = 1005;
    char s1[N], s2[N];
    int l1, l2;
    int dp[N][N];
    
    int DP()
    {
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= l1; i++)
        {
            for (int j = 1; j <= l2; j++)
            {
                if (s1[i-1] == s2[j-1])dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[l1][l2];
    }
    
    int main()
    {
        while (scanf("%s%s", s1, s2) != EOF)
        {
            l1 = strlen(s1);
            l2 = strlen(s2);
            printf("%d
    ", DP());
        }
        //system("pause");
        return 0;
    }
    二刷
  • 相关阅读:
    大数据学习之路(持续更新中...)
    数据挖掘之初级
    用户画像
    机器挖掘之经典算法
    算法时间复杂度
    01-IOS-越狱指南
    gradle 内容学习参考
    python 获取文件路径相关
    第一行代码阅读笔记
    使用同步锁防止多进程的并发操作
  • 原文地址:https://www.cnblogs.com/yun-an/p/10960726.html
Copyright © 2020-2023  润新知