• 限制条件的DP总结


      对于什么至少K个连续正面朝上求排列种数的题目,这样的限制条件DP题目,可以考虑转化为至多 V 个连续朝上的,这样答案,只需 solve(N) - solve(k-1) 即可得到。

    然后对于状态的转移 :一般可以类似这样  int  dp[MAXS][2];  dp[i][0] :表示第i个位置正面朝上,dp[i][1]:表示反面朝上的方法数(且最多有k张连续的正面的种数)

    具体下面有两道例题,思想很相似。

    Uva 10328  (这道题好需要大数才行,数据很大,需要个大数类模板 ,推荐大佬的一个模板: https://blog.csdn.net/code4101/article/details/23020525)

    https://blog.csdn.net/cc_again/article/details/24844911

    //#include <bits/stdc++.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <iostream>  
    #include <string>  
    #include <cstring>  
    #include <cstdio>  
    using namespace std;  
      
    const int maxn = 1000;  
    const int MAXS = 106;
      
    struct bign{  
        int d[maxn], len;  
      
        void clean() { while(len > 1 && !d[len-1]) len--; }  
      
        bign()          { memset(d, 0, sizeof(d)); len = 1; }  
        bign(int num)   { *this = num; }   
        bign(char* num) { *this = num; }  
        bign operator = (const char* num){  
            memset(d, 0, sizeof(d)); len = strlen(num);  
            for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';  
            clean();  
            return *this;  
        }  
        bign operator = (int num){  
            char s[20]; sprintf(s, "%d", num);  
            *this = s;  
            return *this;  
        }  
      
        bign operator + (const bign& b){  
            bign c = *this; int i;  
            for (i = 0; i < b.len; i++){  
                c.d[i] += b.d[i];  
                if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++;  
            }  
            while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++;  
            c.len = max(len, b.len);  
            if (c.d[i] && c.len <= i) c.len = i+1;  
            return c;  
        }  
        bign operator - (const bign& b){  
            bign c = *this; int i;  
            for (i = 0; i < b.len; i++){  
                c.d[i] -= b.d[i];  
                if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--;  
            }  
            while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--;  
            c.clean();  
            return c;  
        }  
        bign operator * (const bign& b)const{  
            int i, j; bign c; c.len = len + b.len;   
            for(j = 0; j < b.len; j++) for(i = 0; i < len; i++)   
                c.d[i+j] += d[i] * b.d[j];  
            for(i = 0; i < c.len-1; i++)  
                c.d[i+1] += c.d[i]/10, c.d[i] %= 10;  
            c.clean();  
            return c;  
        }  
        bign operator / (const bign& b){  
            int i, j;  
            bign c = *this, a = 0;  
            for (i = len - 1; i >= 0; i--)  
            {  
                a = a*10 + d[i];  
                for (j = 0; j < 10; j++) if (a < b*(j+1)) break;  
                c.d[i] = j;  
                a = a - b*j;  
            }  
            c.clean();  
            return c;  
        }  
        bign operator % (const bign& b){  
            int i, j;  
            bign a = 0;  
            for (i = len - 1; i >= 0; i--)  
            {  
                a = a*10 + d[i];  
                for (j = 0; j < 10; j++) if (a < b*(j+1)) break;  
                a = a - b*j;  
            }  
            return a;  
        }  
        bign operator += (const bign& b){  
            *this = *this + b;  
            return *this;  
        }  
      
        bool operator <(const bign& b) const{  
            if(len != b.len) return len < b.len;  
            for(int i = len-1; i >= 0; i--)  
                if(d[i] != b.d[i]) return d[i] < b.d[i];  
            return false;  
        }  
        bool operator >(const bign& b) const{return b < *this;}  
        bool operator<=(const bign& b) const{return !(b < *this);}  
        bool operator>=(const bign& b) const{return !(*this < b);}  
        bool operator!=(const bign& b) const{return b < *this || *this < b;}  
        bool operator==(const bign& b) const{return !(b < *this) && !(b > *this);}  
      
        string str() const{  
            char s[maxn]={};  
            for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';  
            return s;  
        }  
    };  
      
    istream& operator >> (istream& in, bign& x)  
    {  
        string s;  
        in >> s;  
        x = s.c_str();  
        return in;  
    }  
      
    ostream& operator << (ostream& out, const bign& x)  
    {  
        out << x.str();  
        return out;  
    }  
    
    int n,k;
    /*
      转化为至多,slove(v):表示只多有v个连续正面朝上硬币。
      那么答案 ans = slove (n) - slove(k-1);
     */
    bign dp[MAXS][2];// dp[i][0] :表示第i个位置正面朝上,dp[i][1]:表示反面朝上的方法数(且最多有k张连续的正面的种数)
    
    bign solve(int v)
    {
       dp[0][0] = 0;
       dp[0][1] = 1;
       for (int i = 1; i <= n; ++i)
       {
            /* code */
          bign sum = dp[i-1][0] + dp[i-1][1];
          dp[i][1] = sum;
          if (i <= v) dp[i][0] = sum;
          else if (i == v+1) dp[i][0] = sum -1;
          else  dp[i][0] = (sum - dp[i-v-1][1]); 
       }
       return dp[n][0] + dp[n][1];//之所以返回的是dp[n][0] + dp[n][1],因为最后方法总数                        
       //不就是n个位置放完吗,也就是为第n个位置放正or反这两种情况
    }
    
    int main(int argc, char const *argv[])
    {
        
        while(~scanf ("%d%d",&n,&k))
        {
          bign ans = solve(n);
          cout << (ans - solve(k-1))<<endl;
        }
        return 0;
    }

    ZOJ 3747

    https://blog.csdn.net/cc_again/article/details/24841249

    #include <bits/stdc++.h>
    #define MAX 1000000+100
    #define MOD 1000000007
    using namespace std;
    /*
    zoj 3747  dp 递推 
    条件限制DP  将条件都转化为至多。 
     
    */
    typedef long long ll;
    int n,m,k; 
    ll dp[MAX][3];//dp[i][0]:表示第 i 个位置 放 0 (G士兵) 的方法数目,一直放满 N 个位置 
    
    
    ll solve(int u,int v)
    {
      //初始化
      dp[0][0] = dp[0][1] = 0;
      dp[0][2] = 1;
      ll sum = 0;
      for (int i=1;i<=n;++i)
       {
            sum = ( dp[i-1][0] + dp[i-1][1] + dp[i-1][2] )%MOD;
            dp[i][2] = sum;
            // 对于G士兵 
            if ( i <= u)// 此时连续G个数没有超过可以随便放,所以种数 =sum 
              dp[i][0] = sum;
            else if ( i == u +1) dp[i][0] = sum-1;//此时刚好超一个,那么我们就减去 
            else dp[i][0] = (sum - dp[i-u-1][1] - dp[i-u-1][2] ) % MOD;
            //对于R士兵
          if ( i <= v)
              dp[i][1] = sum;
            else if ( i == v +1) dp[i][1] = sum-1;
            else dp[i][1] = ( sum - dp[i-v-1][0] - dp[i-v-1][2] ) % MOD;
       } 
       return  ( ( dp[n][0] + dp[n][1] + dp[n][2] ) % MOD ); 
    }
    
    
    int main ()
    {
      while(~scanf("%d%d%d",&n,&m,&k))
      {
        ll ans = solve(n,k);
        cout << ( ( (ans - solve(m-1,k))%MOD +MOD ) % MOD) << endl;
      }
      
      return 0;
    } 
  • 相关阅读:
    第二十三篇 jQuery 学习5 添加元素
    第二十二篇 jQuery 学习4 内容和属性
    第二十一篇 jQuery 学习3 特效效果
    第二十篇 jQuery 初步学习2
    第十九篇 jQuery初步学习
    第十八篇 JS传参数
    第十七篇 JS验证form表单
    第十六篇 JS实现全选操作
    第十五篇 JS 移入移出事件 模拟一个二级菜单
    第十四篇 JS实现加减乘除 正则表达式
  • 原文地址:https://www.cnblogs.com/yuluoluo/p/8846816.html
Copyright © 2020-2023  润新知