• slim.arg_scope()的使用


    【https://blog.csdn.net/u013921430 转载】

         slim是一种轻量级的tensorflow库,可以使模型的构建,训练,测试都变得更加简单。slim库中对很多常用的函数进行了定义,slim.arg_scope()是slim库中经常用到的函数之一。函数的定义如下;

    1. @tf_contextlib.contextmanager
    2. def arg_scope(list_ops_or_scope, **kwargs):
    3. """Stores the default arguments for the given set of list_ops.
    4. For usage, please see examples at top of the file.
    5. Args:
    6. list_ops_or_scope: List or tuple of operations to set argument scope for or
    7. a dictionary containing the current scope. When list_ops_or_scope is a
    8. dict, kwargs must be empty. When list_ops_or_scope is a list or tuple,
    9. then every op in it need to be decorated with @add_arg_scope to work.
    10. **kwargs: keyword=value that will define the defaults for each op in
    11. list_ops. All the ops need to accept the given set of arguments.
    12. Yields:
    13. the current_scope, which is a dictionary of {op: {arg: value}}
    14. Raises:
    15. TypeError: if list_ops is not a list or a tuple.
    16. ValueError: if any op in list_ops has not be decorated with @add_arg_scope.
    17. """
    18. if isinstance(list_ops_or_scope, dict):
    19. # Assumes that list_ops_or_scope is a scope that is being reused.
    20. if kwargs:
    21. raise ValueError('When attempting to re-use a scope by suppling a'
    22. 'dictionary, kwargs must be empty.')
    23. current_scope = list_ops_or_scope.copy()
    24. try:
    25. _get_arg_stack().append(current_scope)
    26. yield current_scope
    27. finally:
    28. _get_arg_stack().pop()
    29. else:
    30. # Assumes that list_ops_or_scope is a list/tuple of ops with kwargs.
    31. if not isinstance(list_ops_or_scope, (list, tuple)):
    32. raise TypeError('list_ops_or_scope must either be a list/tuple or reused'
    33. 'scope (i.e. dict)')
    34. try:
    35. current_scope = current_arg_scope().copy()
    36. for op in list_ops_or_scope:
    37. key_op = _key_op(op)
    38. if not has_arg_scope(op):
    39. raise ValueError('%s is not decorated with @add_arg_scope',
    40. _name_op(op))
    41. if key_op in current_scope:
    42. current_kwargs = current_scope[key_op].copy()
    43. current_kwargs.update(kwargs)
    44. current_scope[key_op] = current_kwargs
    45. else:
    46. current_scope[key_op] = kwargs.copy()
    47. _get_arg_stack().append(current_scope)
    48. yield current_scope
    49. finally:
    50. _get_arg_stack().pop()

         如注释中所说,这个函数的作用是给list_ops中的内容设置默认值。但是每个list_ops中的每个成员需要用@add_arg_scope修饰才行。所以使用slim.arg_scope()有两个步骤:

    1. 使用@slim.add_arg_scope修饰目标函数
    2.  slim.arg_scope()为目标函数设置默认参数.

         例如如下代码;首先用@slim.add_arg_scope修饰目标函数fun1(),然后利用slim.arg_scope()为它设置默认参数。

    1. import tensorflow as tf
    2. slim =tf.contrib.slim
    3. @slim.add_arg_scope
    4. def fun1(a=0,b=0):
    5. return (a+b)
    6. with slim.arg_scope([fun1],a=10):
    7. x=fun1(b=30)
    8. print(x)

         运行结果为:

    40

        平常所用到的slim.conv2d( ),slim.fully_connected( ),slim.max_pool2d( )等函数在他被定义的时候就已经添加了@add_arg_scope。以slim.conv2d( )为例;

    1. @add_arg_scope
    2. def convolution(inputs,
    3. num_outputs,
    4. kernel_size,
    5. stride=1,
    6. padding='SAME',
    7. data_format=None,
    8. rate=1,
    9. activation_fn=nn.relu,
    10. normalizer_fn=None,
    11. normalizer_params=None,
    12. weights_initializer=initializers.xavier_initializer(),
    13. weights_regularizer=None,
    14. biases_initializer=init_ops.zeros_initializer(),
    15. biases_regularizer=None,
    16. reuse=None,
    17. variables_collections=None,
    18. outputs_collections=None,
    19. trainable=True,
    20. scope=None):

         所以,在使用过程中可以直接slim.conv2d( )等函数设置默认参数。例如在下面的代码中,不做单独声明的情况下,slim.conv2d, slim.max_pool2d, slim.avg_pool2d三个函数默认的步长都设为1,padding模式都是'VALID'的。但是也可以在调用时进行单独声明。这种参数设置方式在构建网络模型时,尤其是较深的网络时,可以节省时间。

    1. with slim.arg_scope(
    2. [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],stride = 1, padding = 'VALID'):
    3. net = slim.conv2d(inputs, 32, [3, 3], stride = 2, scope = 'Conv2d_1a_3x3')
    4. net = slim.conv2d(net, 32, [3, 3], scope = 'Conv2d_2a_3x3')
    5. net = slim.conv2d(net, 64, [3, 3], padding = 'SAME', scope = 'Conv2d_2b_3x3')

    @修饰符     

         其实这种用法是python中常用到的。在python中@修饰符放在函数定义的上方,它将被修饰的函数作为参数,并返回修饰后的同名函数。形式如下;

    1. @fun_a #等价于fun_a(fun_b)
    2. def fun_b():

          这在本质上讲跟直接调用被修饰的函数没什么区别,但是有时候也有用处,例如在调用被修饰函数前需要输出时间信息,我们可以在@后方的函数中添加输出时间信息的语句,这样每次我们只需要调用@后方的函数即可。

    1. def funs(fun,factor=20):
    2. x=fun()
    3. print(factor*x)
    4. @funs #等价funs(add(),fator=20)
    5. def add(a=10,b=20):
    6. return(a+b)
  • 相关阅读:
    Dagger2 (二) 进阶篇
    Dagger2 (一) 入坑篇
    RoboGuice 3.0 (三)总结篇
    RoboGuice 3.0 (二)进阶篇
    RoboGuice 3.0 (一)入坑篇
    spring源码
    Java transient关键字使用
    Spring源码学习
    jvm系列(一):java类的加载机制
    Java中newInstance()和new()
  • 原文地址:https://www.cnblogs.com/yuehouse/p/12033402.html
Copyright © 2020-2023  润新知